Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Open Biol ; 14(9): 240036, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39255847

ABSTRACT

Family with sequence similarity 161 (Fam161) is an ancient family of microtubule-binding proteins located at the centriole and cilium transition zone (TZ) lumen that exhibit rapid evolution in mice. However, their adaptive role is unclear. Here, we used flies to gain insight into their cell type-specific adaptations. Fam161 is the sole orthologue of FAM161A and FAM161B found in flies. Mutating Fam161 results in reduced male reproduction and abnormal geotaxis behaviour. Fam161 localizes to sensory neuron centrioles and their specialized TZ (the connecting cilium) in a cell type-specific manner, sometimes labelling only the centrioles, sometimes labelling the centrioles and cilium TZ and sometimes labelling the TZ with varying lengths that are longer than other TZ proteins, defining a new ciliary compartment, the extra distal TZ. These findings suggest that Fam161 is an essential centriole and TZ protein with a unique cell type-specific localization in fruit flies that can produce cell type-specific adaptations.


Subject(s)
Centrioles , Cilia , Drosophila Proteins , Animals , Centrioles/metabolism , Cilia/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Male , Drosophila melanogaster/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Organ Specificity
2.
Cancers (Basel) ; 15(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37345111

ABSTRACT

Physiologically, well known or traditional immune checkpoints (ICs), such as CTLA-4 and PD-1, are in place to promote tolerance to self-antigens and prevent generation of autoimmunity. In cancer, the ICs are effectively engaged by the tumor cells or stromal ells from the tumor microenvironment through expression of cognate ligands for the ICs present on the cell surface of CD8+ T lymphocytes. The ligation of ICs on CD8+ T lymphocytes triggers inhibitory signaling pathways, leading to quiescence or an exhaustion of CD8+ T lymphocytes. This results in failure of immunotherapy. To overcome this, several FDA-approved therapeutic antibodies are available, but the clinical outcome is quite variable due to the resistance encountered through upregulated expression of alternate ICs such as VISTA, LAG-3, TIGIT and TIM-3. This review focuses on the roles played by the traditional as well as alternate ICs and the contribution of associated signaling pathways in generating such resistance to immunotherapy. Combinatorial targeting of traditional and alternate ICs might be beneficial for immune-refractory tumors.

SELECTION OF CITATIONS
SEARCH DETAIL