Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Front Cell Infect Microbiol ; 12: 804707, 2022.
Article in English | MEDLINE | ID: mdl-35242719

ABSTRACT

The Trypanosomatidae family encompasses unicellular flagellates and obligate parasites of invertebrates, vertebrates, and plants. Trypanosomatids are traditionally divided into heteroxenous, characterized by the alternation of the life cycle between an insect vector and a plant or a vertebrate host, including humans being responsible for severe diseases; and monoxenous, which are presumably unique parasites of invertebrate hosts. Interestingly, studies reporting the occurrence of these monoxenous trypanosomatids in humans have been gradually increasing, either associated with Leishmania co-infection, or supposedly alone either in immunocompromised or even more sporadically in immunocompetent hosts. This review summarizes the first reports that raised the hypothesis that monoxenous trypanosomatids could be found in vertebrate hosts till the most current reports on the occurrence of Crithidia spp. alone in immunocompetent human patients.


Subject(s)
Leishmania , Leishmaniasis , Animals , Humans , Leishmania/genetics , Life Cycle Stages , Plants , Vertebrates
2.
Mem Inst Oswaldo Cruz ; 115: e200504, 2020.
Article in English | MEDLINE | ID: mdl-32578684

ABSTRACT

BACKGROUND: Biodiversity screens and phylogenetic studies are dependent on reliable DNA sequences in public databases. Biological collections possess vouchered specimens with a traceable history. Therefore, DNA sequencing of samples available at institutional collections can greatly contribute to taxonomy, and studies on evolution and biodiversity. METHODS: We sequenced part of the glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and the SSU rRNA (V7/V8) genes from 102 trypanosomatid cultures, which are available on request at www.colprot.fiocruz.br. OBJECTIVE: The main objective of this work was to use phylogenetic inferences, using the obtained DNA sequences and those from representatives of all Trypanosomatidae genera, to generate phylogenetic trees that can simplify new isolates screenings. FINDINGS: A DNA sequence is provided for the first time for several isolates, the phylogenetic analysis allowed the classification or reclassification of several specimens, identification of candidates for new genera and species, as well as the taxonomic validation of several deposits. MAIN CONCLUSIONS: This survey aimed at presenting a list of validated species and their associated DNA sequences combined with a short historical overview of each isolate, which can support taxonomic and biodiversity research and promote culture collections.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Trypanosomatina/classification , Trypanosomatina/genetics , Phylogeny
3.
Protist ; 170(6): 125698, 2019 12.
Article in English | MEDLINE | ID: mdl-31760169

ABSTRACT

Strigomonas culicis is a kinetoplastid parasite of insects that maintains a mutualistic association with an intracellular symbiotic bacterium, which is highly integrated into the protist metabolism: it furnishes essential compounds and divides in synchrony with the eukaryotic nucleus. The protist, conversely, can be cured of the endosymbiont, producing an aposymbiotic cell line, which presents a diminished ability to colonize the insect host. This obligatory association can represent an intermediate step of the evolution towards the formation of an organelle, therefore representing an interesting model to understand the symbiogenesis theory. Here, we used shotgun proteomics to compare the S. culicis endosymbiont-containing and aposymbiotic strains, revealing a total of 11,305 peptides, and up to 2,213 proteins (2,029 and 1,452 for wild type and aposymbiotic, respectively). Gene ontology associated to comparative analysis between both strains revealed that the biological processes most affected by the elimination of the symbiont were the amino acid synthesis, as well as protein synthesis and folding. This large-scale comparison of the protein expression in S. culicis marks a step forward in the comprehension of the role of endosymbiotic bacteria in monoxenous trypanosomatid biology, particularly because trypanosomatids expression is mostly post-transcriptionally regulated.


Subject(s)
Bacterial Physiological Phenomena , Proteome/genetics , Symbiosis/physiology , Trypanosomatina/microbiology , Trypanosomatina/genetics
4.
PLoS One ; 12(3): e0174165, 2017.
Article in English | MEDLINE | ID: mdl-28328988

ABSTRACT

In the present work, we investigated molecular mechanisms governing thermal resistance of a monoxenous trypanosomatid Crithidia luciliae thermophila, which we reclassified as a separate species C. thermophila. We analyzed morphology, growth kinetics, and transcriptomic profiles of flagellates cultivated at low (23°C) and elevated (34°C) temperature. When maintained at high temperature, they grew significantly faster, became shorter, with genes involved in sugar metabolism and mitochondrial stress protection significantly upregulated. Comparison with another thermoresistant monoxenous trypanosomatid, Leptomonas seymouri, revealed dramatic differences in transcription profiles of the two species with only few genes showing the same expression pattern. This disparity illustrates differences in the biology of these two parasites and distinct mechanisms of their thermotolerance, a prerequisite for living in warm-blooded vertebrates.


Subject(s)
Crithidia/genetics , Insecta/genetics , Animals , Biochemical Phenomena/genetics , Gene Expression/genetics , Temperature , Transcriptome/genetics , Up-Regulation/genetics
5.
Mem. Inst. Oswaldo Cruz ; 110(8): 956-965, Dec. 2015. graf
Article in English | LILACS | ID: lil-769828

ABSTRACT

The class Kinetoplastea encompasses both free-living and parasitic species from a wide range of hosts. Several representatives of this group are responsible for severe human diseases and for economic losses in agriculture and livestock. While this group encompasses over 30 genera, most of the available information has been derived from the vertebrate pathogenic genera Leishmaniaand Trypanosoma. Recent studies of the previously neglected groups of Kinetoplastea indicated that the actual diversity is much higher than previously thought. This article discusses the known segment of kinetoplastid diversity and how gene-directed Sanger sequencing and next-generation sequencing methods can help to deepen our knowledge of these interesting protists.


Subject(s)
Biodiversity , DNA, Protozoan/genetics , High-Throughput Nucleotide Sequencing/methods , Kinetoplastida/genetics , Phylogeny , RNA, Protozoan/genetics , Biomarkers , Computational Biology , Databases, Genetic , DNA Barcoding, Taxonomic/trends , Environment , Kinetoplastida/classification , Kinetoplastida/cytology , Metagenomics/trends , /genetics
6.
Mem Inst Oswaldo Cruz ; 110(8): 956-65, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26602872

ABSTRACT

The class Kinetoplastea encompasses both free-living and parasitic species from a wide range of hosts. Several representatives of this group are responsible for severe human diseases and for economic losses in agriculture and livestock. While this group encompasses over 30 genera, most of the available information has been derived from the vertebrate pathogenic genera Leishmaniaand Trypanosoma. Recent studies of the previously neglected groups of Kinetoplastea indicated that the actual diversity is much higher than previously thought. This article discusses the known segment of kinetoplastid diversity and how gene-directed Sanger sequencing and next-generation sequencing methods can help to deepen our knowledge of these interesting protists.


Subject(s)
Biodiversity , DNA, Protozoan/genetics , High-Throughput Nucleotide Sequencing/methods , Kinetoplastida/genetics , Phylogeny , RNA, Protozoan/genetics , Biomarkers , Computational Biology , DNA Barcoding, Taxonomic/trends , Databases, Genetic , Environment , Kinetoplastida/classification , Kinetoplastida/cytology , Metagenomics/trends , RNA, Ribosomal, 18S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...