Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-500068

ABSTRACT

Immunization programs against SARS-CoV-2 with commercial intramuscular (IM) vaccines prevent disease but not infections. The continued evolution of variants of concern (VOC) like Delta and Omicron has increased infections even in countries with high vaccination coverage. This is due to commercial vaccines being unable to prevent viral infection in the upper airways and exclusively targeting the spike (S) protein that is subject to continuous evolution facilitating immune escape. Here we report a multi-antigen, intranasal vaccine, NanoSTING-NS that yields sterilizing immunity and leads to the rapid and complete elimination of viral loads in both the lungs and the nostrils upon viral challenge with SARS-CoV-2 VOC. We formulated vaccines with the S and nucleocapsid (N) proteins individually to demonstrate that immune responses against S are sufficient to prevent disease whereas combination immune responses against both proteins prevents viral replication in the nasal compartment. Studies with the highly infectious Omicron VOC showed that even in vaccine-naive animals, a single dose of NanoSTING-NS significantly reduced transmission. These observations have two implications: (1) mucosal multi-antigen vaccines present a pathway to preventing transmission and ending the pandemic, and (2) an explanation for why hybrid immunity in humans is superior to vaccine-mediated immunity by current IM vaccines.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-488695

ABSTRACT

Respiratory viral infections, especially Influenza (endemic) or SARS-CoV-2 (pandemic since 2020), cause morbidity and mortality worldwide. Despite remarkable progress in the development and deployment of vaccines, they are clearly impacted by the rapid emergence of viral variants. The development of an off-the-shelf, effective, safe, and low-cost drug for prophylaxis against respiratory viral infections is a major unmet medical need. Here, we developed NanoSTING, a liposomally encapsulated formulation of the endogenous STING agonist, 2-3 cGAMP, to function as an immunoantiviral. NanoSTING rapidly activates the bodys innate immune system to facilitate a broad-spectrum antiviral response against SARS-CoV-2 and influenza variants in hamsters and mice. We demonstrate that a single intranasal dose of NanoSTING can: (1) treat infections throughout the respiratory system and minimize clinical symptoms, (2) protect against highly pathogenic strains of SARS-CoV-2 (alpha and delta), (3) provide durable protection against reinfection from the same strains without the need for retreatment, (4) prevent transmission of the highly infectious SARS-CoV-2 Omicron strain, and (5) provide protection against both oseltamivir-sensitive and resistant strains of influenza. Mechanistically, administration of NanoSTING rapidly upregulated interferon-stimulated and antiviral pathways in both the nasal turbinates and lung. Our results support using NanoSTING as a thermostable, immunoantiviral with broad-spectrum antiviral properties making it appealing as a therapeutic for prophylactic or early post-exposure treatment.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-472155

ABSTRACT

The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib) or in advanced clinical trials. We have tested 45 FDA-approved kinase inhibitors in vitro against murine hepatitis virus (MHV) as a model of SARS-CoV-2 replication and identified 12 showing inhibition in the delayed brain tumor (DBT) cell line. Vandetanib, which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), and the RET-tyrosine kinase showed the most promising results on inhibition versus toxic effect on SARS-CoV-2-infected Caco-2 and A549-hACE2 cells (IC50 0.79 M) while also showing a reduction of > 3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, TNF-, and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib rescued the decreased IFN-1{beta} caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved vandetanib is a potential therapeutic candidate for COVID-19 positioned for follow up in clinical trials either alone or in combination with other drugs to address the cytokine storm associated with this viral infection.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21261232

ABSTRACT

AbstractThe worldwide outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become an established global pandemic. Alongside vaccines, antiviral therapeutics are an important part of the healthcare response to counter the ongoing threat presented by COVID-19. Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2 main protease inhibitor with in vitro pan-human coronavirus antiviral activity, and excellent off-target selectivity and in vivo safety profiles. PF-07321332 has demonstrated oral activity in a mouse- adapted SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell potency, in a phase I clinical trial in healthy human participants. ClinicalTrials.gov Identifier: NCT04756531 One-Sentence SummaryPF-07321332 is disclosed as a novel, orally active, investigational small-molecule inhibitor of the SARS-CoV-2 main protease, which is being evaluated in clinical trials for the treatment of COVID-19.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-442779

ABSTRACT

BackgroundInhaled budesonide benefits patients with COVID-19. ProLung-budesonide enables the sustained, low dose administration of budesonide within a delivery vehicle similar to lung surfactant. ProLung-budesonide may offer anti-inflammatory and protective effects to the lung in COVID-19, yet its effect on SARS-CoV-2 replication is unknown. ObjectiveTo determine the efficacy of ProLung-budesonide against SARS-CoV-2 infection in vitro, evaluate its ability to decrease inflammation, and airway hyperresponsiveness in an animal model of lung inflammation. MethodsSARS-CoV-2-infected Vero 76 cells were treated with ProLung-budesonide ([0.03- 100 g/ml]) for 3 days, and virus yield in the supernatant was measured. Ovalbumin-sensitized C57BL/6 mice received aerosolized (a) ProLung-budesonide weekly, (b) only budesonide, either daily or weekly, or (c) weekly empty ProLung-carrier (without budesonide). All treatment groups were compared to sensitized untreated, or normal mice using histopathologic examination, electron microscopy (EM), airway hyperresponsiveness (AHR) to Methacholine (Mch) challenge, and eosinophil peroxidase activity (EPO) measurements in bronchioalveolar lavage (BAL). ResultsProLung-budesonide showed significant inhibition on viral replication of SARS-CoV-2-infected cells with the selectivity index (SI) value > 24. Weekly ProLung-budesonide and daily budesonide therapy significantly decreased lung inflammation and EPO in BAL. ProLung-budesonide localized in type II pneumocytes, and was the only group to significantly decrease AHR, and EPO in BAL with Mch challenge ConclusionsProLung-budesonide significantly inhibited viral replication in SARS-CoV-2 infected cells. It localized into type II pneumocytes, decreased lung inflammation, AHR and EPO activity with Mch challenge. This novel drug formulation may offer a potential inhalational treatment for COVID-19.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-427657

ABSTRACT

SARS-CoV-2 has caused a global pandemic, and has taken over 1.7 million lives as of mid-December, 2020. Although great progress has been made in the development of effective countermeasures, with several pharmaceutical companies approved or poised to deliver vaccines to market, there is still an unmet need of essential antiviral drugs with therapeutic impact for the treatment of moderate-to-severe COVID-19. Towards this goal, a high-throughput assay was used to screen SARS-CoV-2 nsp15 uracil-dependent endonuclease (endoU) function against 13 thousand compounds from drug and lead repurposing compound libraries. While over 80% of initial hit compounds were pan-assay inhibitory compounds, three hits were confirmed as nsp15 endoU inhibitors in the 1-20 M range in vitro. Furthermore, Exebryl-1, a {beta}-amyloid anti-aggregation molecule for Alzheimers therapy, was shown to have antiviral activity between 10 to 66 M, in VERO, Caco-2, and Calu-3 cells. Although the inhibitory concentrations determined for Exebryl-1 exceed those recommended for therapeutic intervention, our findings show great promise for further optimization of Exebryl-1 as an nsp15 endoU inhibitor and as a SARS-CoV-2 antiviral. Author summaryDrugs to treat COVID-19 are urgently needed. To address this, we searched libraries of drugs and drug-like molecules for inhibitors of an essential enzyme of the virus that causes COVID-19, SARS-CoV-2 nonstructural protein (nsp)15. We found several molecules that inhibited the nsp15 enzyme function and one was shown to be active in inhibiting the SARS-CoV-2 virus. This demonstrates that searching for SARS-CoV-2 nsp15 inhibitors can lead inhibitors of SARS-CoV-2, and thus therapeutics for COVID-19. We are currently working to see if these inhibitors could be turned into a drug to treat COVID-19.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-407361

ABSTRACT

SARS-CoV-2 is a newly identified virus that has resulted in over 1.3 M deaths globally and over 59 M cases globally to date. Small molecule inhibitors that reverse disease severity have proven difficult to discover. One of the key approaches that has been widely applied in an effort to speed up the translation of drugs is drug repurposing. A few drugs have shown in vitro activity against Ebola virus and demonstrated activity against SARS-CoV-2 in vivo. Most notably the RNA polymerase targeting remdesivir demonstrated activity in vitro and efficacy in the early stage of the disease in humans. Testing other small molecule drugs that are active against Ebola virus would seem a reasonable strategy to evaluate their potential for SARS-CoV-2. We have previously repurposed pyronaridine, tilorone and quinacrine (from malaria, influenza, and antiprotozoal uses, respectively) as inhibitors of Ebola and Marburg virus in vitro in HeLa cells and of mouse adapted Ebola virus in mouse in vivo. We have now tested these three drugs in various cell lines (VeroE6, Vero76, Caco-2, Calu-3, A549-ACE2, HUH-7 and monocytes) infected with SARS-CoV-2 as well as other viruses (including MHV and HCoV 229E). The compilation of these results indicated considerable variability in antiviral activity observed across cell lines. We found that tilorone and pyronaridine inhibited the virus replication in A549-ACE2 cells with IC50 values of 180 nM and IC50 198 nM, respectively. We have also tested them in a pseudovirus assay and used microscale thermophoresis to test the binding of these molecules to the spike protein. They bind to spike RBD protein with Kd values of 339 nM and 647 nM, respectively. Human Cmax for pyronaridine and quinacrine is greater than the IC50 hence justifying in vivo evaluation. We also provide novel insights into their mechanism which is likely lysosomotropic.

8.
Preprint in English | bioRxiv | ID: ppbiorxiv-347534

ABSTRACT

K777 is a di-peptide analog that contains an electrophilic vinyl-sulfone moiety and is a potent, covalent inactivator of cathepsins. Vero E6, HeLa/ACE2, Caco-2, A549/ACE2, and Calu-3, cells were exposed to SARS-CoV-2, and then treated with K777. K777 reduced viral infectivity with EC50 values of inhibition of viral infection of: 74 nM for Vero E6, <80 nM for A549/ACE2, and 4 nM for HeLa/ACE2 cells. In contrast, Calu-3 and Caco-2 cells had EC50 values in the low micromolar range. No toxicity of K777 was observed for any of the host cells at 10-100 M inhibitor. K777 did not inhibit activity of the papain-like cysteine protease and 3CL cysteine protease, encoded by SARS-CoV-2 at concentrations of [≤] 100 M. These results suggested that K777 exerts its potent anti-viral activity by inactivation of mammalian cysteine proteases which are essential to viral infectivity. Using a propargyl derivative of K777 as an activity-based probe, K777 selectively targeted cathepsin B and cathepsin L in Vero E6 cells. However only cathepsin L cleaved the SARS-CoV-2 spike protein and K777 blocked this proteolysis. The site of spike protein cleavage by cathepsin L was in the S1 domain of SARS-CoV-2, differing from the cleavage site observed in the SARS CoV-1 spike protein. These data support the hypothesis that the antiviral activity of K777 is mediated through inhibition of the activity of host cathepsin L and subsequent loss of viral spike protein processing. SIGNIFICANCEThe virus causing COVID-19 is highly infectious and has resulted in a global pandemic. We confirm that a cysteine protease inhibitor, approved by the FDA as a clinical-stage compound, inhibits SARS-CoV-2 infection of several human and monkey cell lines with notable(nanomolar) efficacy. The mechanism of action of this inhibitor is identified as a specific inhibition of host cell cathepsin L. This in turn inhibits host cell processing of the coronaviral spike protein, a step required for cell entry. Neither of the coronaviral proteases are inhibited, and the cleavage site of spike protein processing is different from that reported in other coronaviruses. Hypotheses to explain the differential activity of the inhibitor with different cell types are discussed.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-054387

ABSTRACT

To identify potential therapeutic stop-gaps for SARS-CoV-2, we evaluated a library of 1,670 approved and reference compounds in an unbiased, cellular image-based screen for their ability to suppress the broad impacts of the SARS-CoV-2 virus on phenomic profiles of human renal cortical epithelial cells using deep learning. In our assay, remdesivir is the only antiviral tested with strong efficacy, neither chloroquine nor hydroxychloroquine have any beneficial effect in this human cell model, and a small number of compounds not currently being pursued clinically for SARS-CoV-2 have efficacy. We observed weak but beneficial class effects of {beta}-blockers, mTOR/PI3K inhibitors and Vitamin D analogues and a mild amplification of the viral phenotype with {beta}-agonists.

SELECTION OF CITATIONS
SEARCH DETAIL
...