Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21257679

ABSTRACT

Across 20 vaccine breakthrough cases detected at our institution, all 20 (100%) infections were due to variants of concern (VOC) and had a median Ct of 20.2 (IQR=17.1-23.3). When compared to 5174 contemporaneous samples sequenced in our laboratory, VOC were significantly enriched among breakthrough infections (p < .05).

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-145920

ABSTRACT

A SARS-CoV-2 vaccine is needed to control the global COVID-19 public health crisis. Atomic-level structures directed the application of prefusion-stabilizing mutations that improved expression and immunogenicity of betacoronavirus spike proteins. Using this established immunogen design, the release of SARS-CoV-2 sequences triggered immediate rapid manufacturing of an mRNA vaccine expressing the prefusion-stabilized SARS-CoV-2 spike trimer (mRNA-1273). Here, we show that mRNA-1273 induces both potent neutralizing antibody and CD8 T cell responses and protects against SARS-CoV-2 infection in lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a Phase 2 clinical trial with a trajectory towards Phase 3 efficacy evaluation.

3.
Article in English | WPRIM (Western Pacific) | ID: wpr-740402

ABSTRACT

PURPOSE: The goal of this study was to assess the accuracy and reliability of a low-cost portable scanner (Scanify) for imaging facial casts compared to a previously validated portable digital stereophotogrammetry device (Vectra H1). This in vitro study was performed using 2 facial casts obtained by recording impressions of the authors, at King's College London Academic Centre of Reconstructive Science. MATERIALS AND METHODS: The casts were marked with anthropometric landmarks, then digitised using Scanify and Vectra H1. Computed tomography (CT) scans of the same casts were performed to verify the validation of Vectra H1. The 3-dimensional (3D) images acquired with each device were compared using linear measurements and 3D surface analysis software. RESULTS: Overall, 91% of the linear Scanify measurements were within 1 mm of the corresponding reference values. The mean overall surface difference between the Scanify and Vectra images was <0.3 mm. Significant differences were detected in depth measurements. Merging multiple Scanify images produced significantly greater registration error. CONCLUSION: Scanify is a very low-cost device that could have clinical applications for facial imaging if imaging errors could be corrected by a future software update or hardware revision.


Subject(s)
Imaging, Three-Dimensional , In Vitro Techniques , Photogrammetry , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...