Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
J Anat ; 230(1): 66-74, 2017 01.
Article in English | MEDLINE | ID: mdl-27485947

ABSTRACT

The methodology for sex determination in human skeletal remains depends on the different bone morphologies presented by men and women. Due to their direct implications in reproduction, the whole pelvis, particularly the os coxae, shows different characteristics in either sex. The sacrum and the os coxae constitute the birth canal. In this research study, the os coxae shape is analyzed using geometric morphometrics, providing information on morphology, regardless of size or any other factor beyond the geometry itself. A total of 46 adult ossa coxae from a Spanish archaeological collection were studied using geometric morphometrics. The results show that there is a restriction on the shape of female os coxae. In contrast, male os coxae presents a greater range of variation. The biological reason for this difference is the obstetrical dilemma; a concept defined as the anatomical conflict between bipedalism and the full-term birth of a neonate whose large head requires greater dimensions in the pelvic cavity. Our experimental data reinforce the validity of the obstetrical dilemma as source of the restriction on the shape of female ossa coxae. Additionally, according to the results obtained, size itself does not represent a condition for belonging to one sex or another.


Subject(s)
Biological Evolution , Pelvic Bones/anatomy & histology , Adult , Female , Humans , Principal Component Analysis/methods
2.
Anat Rec (Hoboken) ; 297(7): 1278-91, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24753482

ABSTRACT

This study aims to interpret the axial patterning of the crocodylian neck, and to find a potential taxonomic signal that corresponds to vertebral position. Morphological variation in the cervico-thoracic vertebrae is compared in fifteen different crocodylian species using 3D geometric morphometric methods. Multivariate analysis indicated that the pattern of intracolumnar variation was a gradual change in shape of the vertebral series (at the parapophyses, diapophyses, prezygapohyses, and postzygapohyses), in the cervical (C3 to C9) and dorsal (D1-D2) regions which was quite conservative among the crocodylians studied. In spite of this, we also found that intracolumnar shape variation allowed differentiation between two sub regions of the crocodylian neck. Growth is subtly correlated with vertebral shape variation, predicting changes in both the vertebral centrum and the neural spine. Interestingly, the allometric scaling for the pooled sample is equivalently shared by each vertebra studied. However, there were significant taxonomic differences, both in the average shape of the entire neck configuration (regional variation) and by shape variation at each vertebral position (positional variation) among the necks. The average neck vertebra of crocodylids is characterized by a relatively cranio-caudally short neural arch, whereby the spine is relatively longer and pointed orthogonal to the frontal plane. Conversely, the average vertebra in alligatorids has cranio-caudally longer neural spine and arch, with a relatively (dorso-ventrally) shorter spine. At each vertebral position there are significant differences between alligatorids and crocodylids. We discuss that the delayed timing of neurocentral fusion in Alligatoridae possibly explains the observed taxonomic differences.


Subject(s)
Alligators and Crocodiles/anatomy & histology , Cervical Vertebrae/anatomy & histology , Thoracic Vertebrae/anatomy & histology , Anatomic Variation , Animals , Imaging, Three-Dimensional , Male , Principal Component Analysis
3.
Int. j. morphol ; 30(4): 1363-1368, dic. 2012. ilus
Article in English | LILACS | ID: lil-670151

ABSTRACT

Understanding the variation of the ophidian vertebral morphology is an essential tool in snake paleobiology, but so far this field remains hardly investigated. A major problematic is the still scarce knowledge about the basis of homogeneity of intracolumnar shape variation along the vertebrae of the precloacal region in these animals. For instance, this variation can be overwhelmingly low in cases such as in vipers, for which it seems almost impossible to describe a concrete regionalization of the precloacal region without ambiguity. This study has applied geometric morphometrics to analyze if the shape variation of the vertebrae of the precloacal vertebrae of an adult specimen of Daboia russelli allows differentiating any sort of parcellation within the column of this organism. We have also explored if size is associated with the organization of vertebral shape along the axial skeleton. The multivariate analyses showed that the main pattern of vertebral shape variation in D. russelli concerns the neural spine and the hypapophysis, whereas the shape of the vertebral centrum appears to be nearly invariant along the series. Our analysis also showed that the precloacal region can be sudivided into two portions that merge in a transitional boundary of largest vertebrae in the middle of the column. From this middle region towards the distal ends of the column vertebrae become smaller changing their shapes in two antithetical ways.


Entender la variación en la morfología vertebral de los ofidios es crucial para la paleobiología del grupo pero, hasta ahora, este campo está poco investigado. Uno de los principales problemas es el escaso conocimiento sobre las bases de la homogeneidad en la variación de la forma a lo largo de la región precloacal en estos animales. Por ejemplo, en el caso de las víboras, dicha variación puede ser muy pequeña lo cual hace casi imposible la descripción de una regionalización precisa sin ambigüedad. En este estudio se ha aplicado morfometría geométrica para analizar si la variación de la forma vertebral de un individuo adulto de la especie Daboia russelli permite subdividir la región precloacal. Además, hemos explorado si el tamaño está asociado con la organización vertebral a lo largo del esqueleto axial. Los análisis multivariantes han demostrado que el patrón principal de la variación de la forma vertebral está determinado por la espina neural y la hipapofisis, mientras que el centro vertebral varía poco a lo largo de la serie. Nuestro análisis ha mostrado que la región precloacal puede ser dividida en dos series cuya separación está marcada por las vértebras más grandes, posicionadas aproximadamente en la mitad de la columna. Tomando como referencia la mitad de la columna, hacia los extremos distales, las vértebras tienden a ser más pequeñas cambiando su forma de modo antitético.


Subject(s)
Animals , Spine/anatomy & histology , Daboia/anatomy & histology , Anatomic Variation , Regression Analysis , Viperidae/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...