Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
PloS One, v. 18, n. 2, e0281344, fev. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4797

ABSTRACT

Leptospirosis is a public health concern with lethality around 15% of the total cases. The current vaccines against Leptospira infection based on bacterins have several limitations, which require urgent development of new ones. In this context, groundbreaking approaches such as peptide-vaccines could be used to come around with promising results. Our goal was to identify conserved and immunogenic epitopes from the lipoprotein LruC that could interact with Major Histocompatibility Complex (MHC) I and II. LruC is a conserved lipoprotein expressed during leptospirosis that is considered among vaccine candidates and can be used as source for development of peptide-based vaccines. We searched for peptides that would be recognized by antibodies from either serum of hamsters previously immunized with low-LPS bacterin vaccines or from serum of patients diagnosed with leptospirosis. Immuno properties of seven peptides from LruC protein were evaluated in silico and by Dot Blot assay, and validate by ELISA. Preliminary results pointed one promising peptide that was recognized by the sera. In conclusion, the immunoinformatic approach helps the search and screening of peptides, while the Dot Blot assay, a simple and effective tool, helps to test and validate them. Thus, these prospective techniques together were validated to identify and validate potential peptides for further investigation as peptide-based vaccines or diagnostic methods.

2.
Toxins, v. 14, 606, 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4524

ABSTRACT

Snakebite envenomation is considered a neglected tropical disease, affecting tens of thousands of people each year. The recommended treatment is the use of antivenom, which is composed of immunoglobulins or immunoglobulin fragments obtained from the plasma of animals hyperimmunized with one (monospecific) or several (polyspecific) venoms. In this review, the efforts made in the improvement of the already available antivenoms and the development of new antivenoms, focusing on snakes of medical importance from sub-Saharan Africa and Latin America, are described. Some antivenoms currently used are composed of whole IgGs, whereas others use F(ab’)2 fragments. The classic methods of attaining snake antivenoms are presented, in addition to new strategies to improve their effectiveness. Punctual changes in immunization protocols, in addition to the use of cross-reactivity between venoms from different snakes for the manufacture of more potent and widely used antivenoms, are presented. It is known that venoms are a complex mixture of components; however, advances in the field of antivenoms have shown that there are key toxins that, if effectively blocked, are capable of reversing the condition of in vivo envenomation. These studies provide an opportunity for the use of monoclonal antibodies in the development of new-generation antivenoms. Thus, monoclonal antibodies and their fragments are described as a possible alternative for the production of antivenoms, regardless of the venom. This review also highlights the challenges associated with their development.


O envenenamento por picada de cobra é considerado uma doença tropical negligenciada, afetando dezenas de milhares de pessoas a cada ano. O tratamento recomendado é o uso de antiveneno, que é composto por imunoglobulinas ou fragmentos de imunoglobulinas obtidos do plasma de animais hiperimunizados com um (monoespecífico) ou vários (poliespecíficos) venenos. Nesta revisão, são descritos os esforços realizados no aprimoramento dos antivenenos já disponíveis e no desenvolvimento de novos antivenenos, com foco em serpentes de importância médica da África Subsaariana e América Latina. Alguns antivenenos atualmente utilizados são compostos por IgGs inteiros, enquanto outros usam fragmentos F(ab’)2. São apresentados os métodos clássicos de obtenção de soros de serpentes, além de novas estratégias para melhorar sua eficácia. São apresentadas mudanças pontuais nos protocolos de imunização, além do uso de reatividade cruzada entre venenos de diferentes serpentes para a fabricação de antivenenos mais potentes e amplamente utilizados. Sabe-se que os venenos são uma mistura complexa de componentes; no entanto, avanços na área de antivenenos mostraram que existem toxinas-chave que, se efetivamente bloqueadas, são capazes de reverter a condição de envenenamento in vivo. Esses estudos oferecem uma oportunidade para o uso de anticorpos monoclonais no desenvolvimento de antivenenos de nova geração. Assim, anticorpos monoclonais e seus fragmentos são descritos como uma possível alternativa para a produção de antivenenos, independente do veneno. Esta revisão também destaca os desafios associados ao seu desenvolvimento.

3.
Adv Clin Toxicol ; 7(1): 236, 2022.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4474

ABSTRACT

Considered by the World Health Organization a neglected public health problem, snakebites occur predominantly in tropical areas of Africa, Asia and Latin America. Approximately 2.7 million people worldwide are victims of snakebites each year, of which between 81,000 and 138,000 later die. Among the survivors, about 400,000 have some permanent disability. The entirety of the mechanism responsible for the venom pathophysiology is not completely understood. However, most of the venom toxins affect human hemostasis, as Bothrops venom components, which destabilize endothelium, affect platelet aggregation, blood clotting and fibrinolysis. Such effects are not only components of the clinical picture of patients who have suffered envenomation, but are also directly associated with the severity of the accident. Thus, it is of great importance to understand the main hemostatic alterations observed in envenomation’s by snakes of the genus Bothrops, which is predominant in South America. Therefore, this review describes the hemostatic changes that occur in Bothrops snakebites, to further improve the understanding of the general pathological mechanisms of snake envenomation’s and the correlation between endothelium dysfunction and coagulation/fibrinolysis systems as a result of the interaction of each class of venom components with human hemostasis. This knowledge is crucial for the development of new effective therapeutic approaches, attenuating the severity of snakebites and reducing amputations and deaths. Besides this, a molecular comprehension of the hemostatic alterations caused by each component of Bothrops venoms may help to identify new molecules and targets for therapeutic applications.

4.
Front Immunol, v. 13, 871874, jul. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4442

ABSTRACT

The COVID-19 pandemic caused by the severe acute syndrome virus 2 (SARS-CoV-2) has been around since November 2019. As of early June 2022, more than 527 million cases were diagnosed, with more than 6.0 million deaths due to this disease. Coronaviruses accumulate mutations and generate greater diversity through recombination when variants with different mutations infect the same host. Consequently, this virus is predisposed to constant and diverse mutations. The SARS-CoV-2 variants of concern/interest (VOCs/VOIs) such as Alpha (B.1.1.7), Beta (B.1.351), Gamma (B.1.1.28/P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) have quickly spread across the world. These VOCs and VOIs have accumulated mutations within the spike protein receptor-binding domain (RBD) which interacts with the angiotensin-2 converting enzyme (ACE-2) receptor, increasing cell entry and infection. The RBD region is the main target for neutralizing antibodies; however, other notable mutations have been reported to enhance COVID-19 infectivity and lethality. Considering the urgent need for alternative therapies against this virus, an anti-SARS-CoV-2 equine immunoglobulin F(ab’)2, called ECIG, was developed by the Butantan Institute using the whole gamma-irradiated SARS-CoV-2 virus. Surface plasmon resonance experiments revealed that ECIG binds to wild-type and mutated RBD, S1+S2 domains, and nucleocapsid proteins of known VOCs, including Alpha, Gamma, Beta, Delta, Delta Plus, and Omicron. Additionally, it was observed that ECIG attenuates the binding of RBD (wild-type, Beta, and Omicron) to human ACE-2, suggesting that it could prevent viral entry into the host cell. Furthermore, the ability to concomitantly bind to the wild-type and mutated nucleocapsid protein likely enhances its neutralizing activity of SARS-CoV-2. We postulate that ECIG benefits COVID-19 patients by reducing the infectivity of the original virus and existing variants and may be effective against future ones. Impacting the course of the disease, mainly in the more vulnerable, reduces infection time and limits the appearance of new variants by new recombination.

5.
Front Cell Infect Microbiol, v. 12, 896972, jun. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4400

ABSTRACT

The COVID-19 pandemic, caused by SARS-CoV-2, had its first cases identified in late 2019 and was considered a clinical pandemic in March 2020. In March 2022, more than 500 million people were infected and 6,2 million died as a result of this disease, increasingly associated with changes in human hemostasis, such as hypercoagulation. Numerous factors contribute to the hypercoagulable state, and endothelial dysfunction is the main one, since the activation of these cells can strongly activate platelets and the coagulation system. In addition, there is a dysregulation of the renin-angiotensin system due to the SARS-CoV-2 takeover of the angiotensin converting enzyme 2, resulting in a strong immune response that could further damage the endothelium. Thrombus formation in the pulmonary microvasculature structure in patients with COVID-19 is an important factor to determine the severity of the clinical picture and the outcome of this disease. This review describes the hemostatic changes that occur in SARS-CoV-2 infection, to further improve our understanding of pathogenic mechanisms and the interaction between endothelium dysfunction, kallikrein-kinins, renin angiotensin, and the Coagulation/fibrinolysis systems as underlying COVID-19 effectors. This knowledge is crucial for the development of new effective therapeutic approaches, attenuating the severity of SARS-CoV-2’s infection and to reduce the deaths.

6.
Toxicon, v. 199, p. 87-93, ago. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3860

ABSTRACT

Snakebite accidents are a public health problem that affects the whole world, causing thousands of deaths and amputations each year. In Brazil, snakebite envenomations are caused mostly by snakes from the Bothrops genus. The local symptoms are characterized by pain, swelling, ecchymosis, and hemorrhages. Systemic disturbances can lead to necrosis and amputations. The present treatment consists of intravenous administration of bothropic antivenom, which is capable of reversing most of the systemic symptoms, while presenting limitations to treat the local effects, such as hemorrhage and to neutralize the snake venom serine protease (SVSP). In this context, we aimed to evaluate the activity of selective serine protease inhibitors (pepC and pepB) in combination with the bothropic antivenom in vivo. Further, we assessed their possible synergistic effect in the treatment of coagulopathy and hemorrhage induced by Bothrops jararaca venom. For this, we evaluated the in vivo activity in mouse models of local hemorrhage and a series of in vitro hemostasis assays. Our results showed that pepC and pepB, when combinated with the antivenom, increase its protective activity in vivo and decrease the hemostatic disturbances in vitro with high selectivity, possibly by inhibiting botropic proteases. These data suggest that the addition of serine protease inhibitor to the antivenom can improve its overall potential.

7.
J Venom Anim Toxins Incl Trop Dis, v. 27, e20200066, jan. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3486

ABSTRACT

Background: In Central and South America, snakebite envenomation is mainly caused by Bothrops spp. snakes, whose venoms feature significant biochemical richness, including serine proteases. The available bothropic antivenoms are efficient in avoiding fatalities, but do not completely neutralize venom serine proteases, which are co-responsible for some disorders observed during envenomation. Methods: In order to search for tools to improve the antivenom’s, 6-mer peptides were designed based on a specific substrate for Bothrops jararaca venom serine proteases, and then synthesized, with the intention to selectively inhibit these enzymes. Results: Using batroxobin as a snake venom serine protease model, two structurally similar inhibitor peptides were identified. When tested on B. jararaca venom, one of the new inhibitors displayed a good potential to inhibit the activity of the venom serine proteases. These inhibitors do not affect human serine proteases as human factor Xa and thrombin, due to their selectivity. Conclusion: Our study identified two small peptides able to inhibit bothropic serine proteases, but not human ones, can be used as tools to enhance knowledge of the venom composition and function. Moreover, one promising peptide (pepC) was identified that can be explored in the search for improving Bothrops spp. envenomation treatment.

8.
3 Biotech ; 10: 162, 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17552

ABSTRACT

The emergence of bacterial resistance due to the indiscriminate use of antibiotics warrants the need for developing new bioactive agents. In this context, antimicrobial peptides are highly useful for managing resistant microbial strains. In this study, we report the isolation and characterization of peptides obtained from the venom of the toadfish Thalassophryne nattereri. These peptides were active against Gram-positive and Gram-negative bacteria and fungi. The primary amino acid sequences showed similarity to Cocaine and Amphetamine Regulated Transcript peptides, and two peptide analogs—Tn CRT2 and Tn CRT3—were designed using the AMPA algorithm based on these sequences. The analogs were subjected to physicochemical analysis and antimicrobial screening and were biologically active at concentrations ranging from 2.1 to 13 µM. Zeta potential analysis showed that the peptide analogs increased the positive charge on the cell surface of Gram-positive and Gram-negative bacteria. The toxicity of Tn CRT2 and Tn CRT3 were analyzed in vitro using a hemolytic assay and tetrazolium salt reduction in fibroblasts and was found to be significant only at high concentrations (up to 40 µM). These results suggest that this methodological approach is appropriate to design novel antimicrobial peptides to fight bacterial infections and represents a new and promising discovery in fish venom.

9.
Med. Microbiol. Immunol. ; 209: 201–213, 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17465

ABSTRACT

Leptospirosis is a worldwide spread zoonosis, caused by pathogenic Leptospira. Evidences suggest that compromised hemostasis might be involved in the leptospirosis pathophysiology. In the genome of L. interrogans serovar Copenhageni, we found two genes coding for proteins which comprise von Willebrand factor (VWF) A domains (BatA and BatB). As VWF A domains exhibit multiple binding sites which contributes to human VWF hemostatic functions, we hypothesized that the L. interrogans BatA and BatB proteins could be involved in the hemostatic impairment during leptospirosis. We have cloned, expressed in Escherichia coli, and purified recombinant BatA and BatB. The influence of recombinant BatA and BatB on different in vitro hemostatic assays evaluating the enzymatic activity, platelet aggregation and fibrinogen integrity was investigated. We describe BatB as a new serine protease which is able to cleave thrombin chromogenic substrate, fibrin, fibrinogen, gelatin and casein; while BatA is active only towards fibrinogen. BatA and BatB interfere with the platelet aggregation induced by VWF/ristocetin and thrombin. Our results suggest an important role of the L. interrogans serovar Copenhageni Bat proteins in the hemostasis dysfunction observed during leptospirosis and contribute to the understanding of the leptospirosis pathophysiological mechanisms.

10.
Med Microbiol Immunol, v. 209, p. 201-213, fev. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2953

ABSTRACT

Leptospirosis is a worldwide spread zoonosis, caused by pathogenic Leptospira. Evidences suggest that compromised hemostasis might be involved in the leptospirosis pathophysiology. In the genome of L. interrogans serovar Copenhageni, we found two genes coding for proteins which comprise von Willebrand factor (VWF) A domains (BatA and BatB). As VWF A domains exhibit multiple binding sites which contributes to human VWF hemostatic functions, we hypothesized that the L. interrogans BatA and BatB proteins could be involved in the hemostatic impairment during leptospirosis. We have cloned, expressed in Escherichia coli, and purified recombinant BatA and BatB. The influence of recombinant BatA and BatB on different in vitro hemostatic assays evaluating the enzymatic activity, platelet aggregation and fibrinogen integrity was investigated. We describe BatB as a new serine protease which is able to cleave thrombin chromogenic substrate, fibrin, fibrinogen, gelatin and casein; while BatA is active only towards fibrinogen. BatA and BatB interfere with the platelet aggregation induced by VWF/ristocetin and thrombin. Our results suggest an important role of the L. interrogans serovar Copenhageni Bat proteins in the hemostasis dysfunction observed during leptospirosis and contribute to the understanding of the leptospirosis pathophysiological mechanisms.

11.
PLoS Negl Trop Dis ; 13(1): e0007017, 2019 01.
Article in English | MEDLINE | ID: mdl-30657756

ABSTRACT

BACKGROUND: Naja annulifera is a medically important venomous snake occurring in some of the countries in Sub-Saharan Africa. Accidental bites result in severe coagulation disturbances, systemic inflammation and heart damage, as reported in dogs, and death, by respiratory arrest, in humans. Despite the medical importance of N. annulifera, little is known about its venom composition and the pathogenesis of envenomation. In this paper, the toxic, inflammatory and immunogenic properties of N. annulifera venom were analyzed. METHODOLOGY/PRINCIPAL FINDINGS: Venom proteomic analysis identified 79 different proteins, including Three Finger Toxins, Cysteine Rich Secretory Proteins, Metalloproteinases, Phospholipases A2 (PLA2), Hyaluronidase, L-amino-acid oxidase, Cobra Venom Factor and Serine Proteinase. The presence of PLA2, hyaluronidase, fibrinogenolytic and anticoagulant activities was detected using functional assays. The venom was cytotoxic to human keratinocytes. In an experimental murine model of envenomation, it was found that the venom induced local changes, such as swelling, which was controlled by anti-inflammatory drugs. Moreover, the venom caused death, which was preceded by systemic inflammation and pulmonary hemorrhage. The venom was shown to be immunogenic, inducing a strong humoral immune response, with the production of antibodies able to recognize venom components with high molecular weight and to neutralize its lethal activity. CONCLUSIONS/SIGNIFICANCE: The results obtained in this study demonstrate that N. annulifera venom contains toxins able to induce local and systemic inflammation, which can contribute to lung damage and death. Moreover, the venom is immunogenic, an important feature that must be considered during the production of a therapeutic anti-N. annulifera antivenom.


Subject(s)
Elapid Venoms/analysis , Elapid Venoms/toxicity , Animals , Antivenins/pharmacology , Female , Hyaluronoglucosaminidase/analysis , L-Amino Acid Oxidase/analysis , Male , Metalloproteases/analysis , Mice , Mice, Inbred BALB C , Naja , Phospholipases A2/analysis , Proteomics , Serine Proteases/analysis
12.
Plos Neglect Trop Dis, v. 13, n. 1, e0007017, jan. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2669

ABSTRACT

Background Naja annulifera is a medically important venomous snake occurring in some of the countries in Sub-Saharan Africa. Accidental bites result in severe coagulation disturbances, systemic inflammation and heart damage, as reported in dogs, and death, by respiratory arrest, in humans. Despite the medical importance of N. annulifera, little is known about its venom composition and the pathogenesis of envenomation. In this paper, the toxic, inflammatory and immunogenic properties of N. annulifera venom were analyzed. Methodology/Principal findings Venom proteomic analysis identified 79 different proteins, including Three Finger Toxins, Cysteine Rich Secretory Proteins, Metalloproteinases, Phospholipases A2 (PLA2), Hyaluronidase, L-amino-acid oxidase, Cobra Venom Factor and Serine Proteinase. The presence of PLA2, hyaluronidase, fibrinogenolytic and anticoagulant activities was detected using functional assays. The venom was cytotoxic to human keratinocytes. In an experimental murine model of envenomation, it was found that the venom induced local changes, such as swelling, which was controlled by anti-inflammatory drugs. Moreover, the venom caused death, which was preceded by systemic inflammation and pulmonary hemorrhage. The venom was shown to be immunogenic, inducing a strong humoral immune response, with the production of antibodies able to recognize venom components with high molecular weight and to neutralize its lethal activity. Conclusions/Significance The results obtained in this study demonstrate that N. annulifera venom contains toxins able to induce local and systemic inflammation, which can contribute to lung damage and death. Moreover, the venom is immunogenic, an important feature that must be considered during the production of a therapeutic anti-N. annulifera antivenom.

13.
São Paulo; 2019. 16 p. il.
Thesis in Portuguese | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-ESPECIALIZACAOSESPROD, Sec. Est. Saúde SP | ID: but-ib17360

ABSTRACT

A coagulação sanguínea, considerada por muito tempo dependente somente de plaquetas e enzimas denominadas fatores de coagulação, atualmente é vista como um sistema altamente regulado, equilibrado e multifacetado, constituído tanto por componentes moleculares quanto celulares e é dividida em três fases que se sobrepõem entre si: iniciação (exposição do plasma em uma lesão endotelial), amplificação (adesão e ativação de mais plaquetas e ativação dos fatores V, VIII e XI) e propagação (formação dos complexos tenases e protrombinase). Após entendimento do mecanismo dos fatores de coagulação, diversos estudos estão sendo desenvolvidos a fim de, produzir fármacos com funções anticoagulantes. Já se é sabido que inibidores de proteinases provenientes de glândulas salivares de animais hemátofogos e de origem vegetal, principalmente do gênero Bauhinia – objeto de estudo do presente trabalho – têm sido amplamente estudados e constituem uma importante classe de moléculas biologicamente ativas com resultados promissores. Visto que ainda não há um anticoagulante ideal e que os inibidores de proteinases isolados do gênero Bauhinia, podem ser usados em estudos de interação enzima-substrato e como potenciais novos fármacos, o presente trabalho teve como objetivo o desenvolvimento de inibidores peptídicos para serino proteinases da coagulação sanguínea humana. Desenho, síntese, purificação e identificação dos peptídeos 1A e 1B foram baseados no sítio reativo do inibidor de fator Xa (BuXI) e do inibidor de tripsina (BvTI), respectivamente. Nos ensaios de inibição enzimática, os peptídeos 1A e 1B foram avaliados quanto à eficácia na inibição do fator Xa humano, apenas o peptídeo 1A inibiu 20% a atividade dessa serino proteinase central da cascata da coagulação sanguínea humana. Modificações na sequência peptídica proporcionaram melhoria na associação desses peptídeos à enzima alvo, afetando de maneira efetiva a atividade catalítica da mesma. E também foi utilizado o programa protparam para características químicas dos peptídeos sintéticos.

14.
Plos Neglect. Trop. Dis. ; 13(1): e0007017, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15827

ABSTRACT

Background Naja annulifera is a medically important venomous snake occurring in some of the countries in Sub-Saharan Africa. Accidental bites result in severe coagulation disturbances, systemic inflammation and heart damage, as reported in dogs, and death, by respiratory arrest, in humans. Despite the medical importance of N. annulifera, little is known about its venom composition and the pathogenesis of envenomation. In this paper, the toxic, inflammatory and immunogenic properties of N. annulifera venom were analyzed. Methodology/Principal findings Venom proteomic analysis identified 79 different proteins, including Three Finger Toxins, Cysteine Rich Secretory Proteins, Metalloproteinases, Phospholipases A2 (PLA2), Hyaluronidase, L-amino-acid oxidase, Cobra Venom Factor and Serine Proteinase. The presence of PLA2, hyaluronidase, fibrinogenolytic and anticoagulant activities was detected using functional assays. The venom was cytotoxic to human keratinocytes. In an experimental murine model of envenomation, it was found that the venom induced local changes, such as swelling, which was controlled by anti-inflammatory drugs. Moreover, the venom caused death, which was preceded by systemic inflammation and pulmonary hemorrhage. The venom was shown to be immunogenic, inducing a strong humoral immune response, with the production of antibodies able to recognize venom components with high molecular weight and to neutralize its lethal activity. Conclusions/Significance The results obtained in this study demonstrate that N. annulifera venom contains toxins able to induce local and systemic inflammation, which can contribute to lung damage and death. Moreover, the venom is immunogenic, an important feature that must be considered during the production of a therapeutic anti-N. annulifera antivenom.

15.
Front. Microbiol. ; 8: 500, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15375

ABSTRACT

Leptospirosis is a worldwide zoonotic and neglected infectious disease of human and veterinary concern, caused by pathogenic Leptospira species. Although bleeding is a common symptom of severe leptospirosis, the cause of hemorrhage is not completely understood. In severe infections, modulation of hemostasis by pathogens is an important virulence mechanism, and hemostatic impairments such as coagulation/fibrinolysis dysfunction are frequently observed. Here, we analyze the coagulation status of experimentally infected hamsters in an attempt to determine coagulation interferences and the origin of leptospirosis hemorrhagic symptomatology. Hamsters were experimentally infected with L. interrogans. The lungs, kidneys, and livers were collected for culture, histopathology, and coagulation assays. L. interrogans infection disturbs normal coagulation in the organs of animals. Our results suggest the presence of a thrombin-like factor or FX activator, which is able to activate FII in the leptospirosis organ extracts. The activity of those factors is accelerated in the prothrombinase complex. Additionally, we show for the first time that live leptospires act as a surface for the prothrombinase complex assembly. Our results contribute to the understanding of leptospirosis pathophysiological mechanisms and may open new routes for the discovery of novel treatments in the severe manifestations of the disease.

16.
J. Venomous Anim. Toxins Incl. Trop. Dis ; 22: Número do artigo: 36, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14629

ABSTRACT

Background: Hemolin proteins are cell adhesion molecules from lepidopterans involved in a wide range of cell interactions concerning their adhesion properties. However, hemolin's roles in cell proliferation and wound healing are not fully elucidated. It has been recently reported that rLosac, a recombinant hemolin from the caterpillar Lonomia obliqua, presents antiapoptotic activity and is capable of improving in vitro wound healing. Therefore, this study aimed to explore rLosac's in vivo effects using a skin wound healing model in rats. Methods: Circular full-thickness wounds in the rat dorsum skin were treated either with rLosac, or with saline (control), allowing healing by keeping the wounds occluded and moist. During the wound healing, the following tissue regeneration parameters were evaluated: wound closure and collagen content. Furthermore, tissue sections were subjected to histological and immunohistochemical analyses. Results: The rLosac treatment has demonstrated its capacity to improve wound healing, as reflected in findings of a larger number of activated fibroblasts, proliferation of epithelial cells, increase of collagen type 1, and decrease of inflammatory infiltrate. Conclusion: The findings have indicated the rLosac protein as a very promising molecule for the development of new wound-healing formulations


Subject(s)
Biochemistry , Cell Biology
17.
Biochim. Biophys. Acta, Proteins Proteomics ; 1824(10): p. 1428-1435, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14259

ABSTRACT

Background: Cancer has long been associated with thrombosis and many of the standard chemotherapeutics used to treat cancer are pro-thrombotic. Thus, the identification of novel selective anticancer drugs that also have antithrombotic properties is of enormous significance. Amblyomin-X is an anticancer protein derived from the salivary glands of the Amblyomma cajennense tick. Methods: In this work, we determined the inhibition profile of Amblyomin-X and its effect on activated partial thromboplastin time (aPTT) and prothrombin time (PT), using various approaches such as, kinetic analyses, amidolytic assays, SDS-PAGE, and mass spectrometry. Results: Amblyomin-X inhibited factor Xa, prothrombinase and tenase activities. It was hydrolyzed by trypsin and plasmin. MS/MS data of tryptic hydrolysate of Amblyomin-X suggested the presence of Cys(8)-Cys(59) and Cys(19)-Cys(42) but not Cys(34)-Cys(55) disulfide bond. Instead of Cys(34)-Cys(55), two noncanonical Cys(34)-Cys(74) and Cys(55)-Cys(74) disulfide bonds were identified. Furthermore, when Amblyomin-X (1 mg/kg) injected in rabbits, it prolonged aPTT and PT. Conclusion: Amblyomin-X is a noncompetitive inhibitor (K-i = 3.9 mu M) of factor Xa. It is a substrate for plasmin and trypsin, but not for factor Xa and thrombin. The disulfide Cys(34)-Cys(55) bond probably scrambles with inter chain seventh free cysteine residues (Cys(74)) of Amblyomin-X. The prolongation of PT and aPTT is reversible. General Significance. In term of anticoagulant property, this is structural and functional characterization of Amblyomin-X. All together, these results and previous findings suggest that Amblyomin-X has a potential to become an anticancer drug with antithrombotic property. (C) 2016 Elsevier B.V. All rights reserved.


Subject(s)
Biochemistry , Medical Oncology , Pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...