Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 53(1): 224-227, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27918029

ABSTRACT

The role of a backbone carbonyl interaction with an engineered CuA center in azurin was investigated by developing a method of synthesis and incorporation of a depsipeptide where one of the amide bonds in azurin is replaced by an ester bond using expressed protein ligation. Studies by electronic absorption and electron paramagnetic resonance spectroscopic techniques indicate that, while the substitution does not significantly alter the geometry of the site, it weakens the axial interaction to the CuA center and strengthens the Cu-Cu bond, as evidenced by the blue shift of the near-IR absorption that has been assigned to the Cu-Cu ψ → ψ* transition. Interestingly, the changes in the electronic structure from the replacement did not result in a change in the reduction potential of the CuA center, suggesting that the diamond core structure of Cu2SCys2 is resistant to variations in axial interactions.


Subject(s)
Azurin/chemistry , Azurin/metabolism , Esters/chemistry , Peptides/chemistry , Azurin/genetics , Models, Molecular , Protein Conformation , Protein Engineering
2.
Inorg Chem Front ; 1(2): 153-158, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24707355

ABSTRACT

The Cu-SCys interaction is known to play a dominant role in defining the type 1 (T1) blue copper center with respect to both its electronic structure and electron transfer function. Despite this importance, its role has yet to be probed by mutagenesis studies without dramatic change of its T1 copper character. We herein report replacement of the conserved Cys112 in azurin with the nonproteinogenic amino acid homocysteine. Based on electronic absorption, electron paramagnetic resonance, and extended x-ray absorption fine structural spectroscopic studies, this variant displays typical type 1 copper site features. Surprisingly, instead of increasing the strength of the Cu-sulfur interaction by the introduction of the extra methylene group, the Cys112Hcy azurin showed a decrease in the covalent interaction between SHcy and Cu(II) when compared with the WT SCys-Cu(II) interaction. This is likely due to geometric adjustment of the center that resulted in the copper ion moving out of the trigonal plane defined by two histidines and one Hcy and closer to Met121. These structural changes resulted in an increase of reduction potential by 35 mV, consistent with lower Cu-S covalency. These results suggest that the Cu-SCys interaction is close to being optimal in native blue copper protein. It also demonstrates the power of using nonproteinogenic amino acids in addressing important issues in bioinorganic chemistry.

3.
J Am Chem Soc ; 132(29): 10093-101, 2010 Jul 28.
Article in English | MEDLINE | ID: mdl-20608676

ABSTRACT

Interactions of the axial ligand with its blue copper center are known to be important in tuning spectroscopic and redox properties of cupredoxins. While conversion of the blue copper center with a weak axial ligand to a green copper center containing a medium strength axial ligand has been demonstrated in cupredoxins, converting the blue copper center to a red copper center with a strong axial ligand has not been reported. Here we show that replacing Met121 in azurin from Pseudomonas aeruginosa with Cys caused an increased ratio (R(L)) of absorption at 447 nm over that at 621 nm. Whereas no axial Cu-S(Cys121) interaction in Met121Cys was detectable by extended X-ray absorption fine structure (EXAFS) spectroscopy at pH 5, similar to what was observed in native azurin with Met121 as the axial ligand, the Cu-S(Cys121) interaction at 2.74 A is clearly visible at higher pH. Despite the higher R(L) and stronger axial Cys121 interaction with Cu(II) ion, the Met121Cys variant remains largely a type 1 copper protein at low pH (with hyperfine coupling constant A( parallel) = 54 x 10(-4) cm(-1) at pH 4 and 5), or distorted type 1 or green copper protein at high pH (A(parallel) = 87 x 10(-4) cm(-1) at pH 8 and 9), attributable to the relatively long distance between the axial ligand and copper and the constraint placed by the protein scaffold. To shorten the distance between axial ligand and copper, we replaced Met121 with a nonproteinogenic amino acid homocysteine that contains an extra methylene group, resulting in a variant whose spectra (R(L)= 1.5, and A(parallel) = 180 x 10(-4) cm(-1)) and Cu-S(Cys) distance (2.22 A) are very similar to those of the red copper protein nitrosocyanin. Replacing Met121 with Cys or homocysteine resulted in lowering of the reduction potential from 222 mV in the native azurin to 95 +/- 3 mV for Met121Cys azurin and 113 +/- 6 mV for Met121Hcy azurin at pH 7. The results strongly support the "coupled distortion" model that helps explain axial ligand tuning of spectroscopic properties in cupredoxins, and demonstrate the power of using unnatural amino acids to address critical chemical biological questions.


Subject(s)
Azurin/chemistry , Azurin/genetics , Copper , Cysteine , Homocysteine , Mutagenesis, Site-Directed/methods , Amino Acid Sequence , Color , Electrochemistry , Gene Expression , Ligands , Models, Molecular , Molecular Sequence Data , Mutation , Protein Conformation , Pseudomonas aeruginosa , Spectrum Analysis
4.
Methods Enzymol ; 462: 97-115, 2009.
Article in English | MEDLINE | ID: mdl-19632471

ABSTRACT

Metalloproteins contain highly specialized metal-binding sites that are designed to accept specific metal ions to maintain correct function. Although many of the sites have been modified with success, the relative paucity of functional group availability within proteinogenic amino acids can sometimes leave open questions about specific functions of the metal binding ligands. Attaining a more thorough analysis of individual amino acid function within metalloproteins has been realized using expressed protein ligation (EPL). Here we describe our recent efforts using EPL to incorporate nonproteinogenic cysteine and methionine analogues into the type 1 copper site found in Pseudomonas aeruginosa azurin.


Subject(s)
Azurin/chemistry , Bacterial Proteins/chemistry , Metalloproteins/chemistry , Peptides/chemical synthesis , Protein Engineering/methods , Amino Acid Sequence , Amino Acid Substitution , Amino Acids/physiology , Binding Sites , Copper/metabolism , Cysteine/chemistry , Electron Spin Resonance Spectroscopy , Inteins , Ligands , Methionine/analogs & derivatives , Methionine/chemistry , Molecular Sequence Data , Protein Splicing , Pseudomonas aeruginosa/enzymology , Recombinant Fusion Proteins/biosynthesis , Selenocysteine/analogs & derivatives , Selenocysteine/chemistry , Spectrophotometry
5.
Biochemistry ; 47(49): 13074-83, 2008 Dec 09.
Article in English | MEDLINE | ID: mdl-19007184

ABSTRACT

The human copper chaperone for superoxide dismutase binds copper both in an Atx1-like MTCQSC motif in domain 1 and via a multinuclear cluster formed by two CXC motifs at the D3 dimer interface. The composition of the Cu(I) cluster has been investigated previously by mutagenesis of the CXC motif, and by construction of a CXU selenocysteine derivative, which has permitted XAS studies at both Cu and Se absorption edges. Here, we report the semisynthesis and spectroscopic characterization of a series of derivatives with the sequences 243-CACA, 243-CAUA, 243-UACA, and 243-UAUA in the D1 double mutant (C22AC25A) background, prepared by expressed protein ligation of Sec-containing tetrapeptides to an hCCS-243 truncation. By varying the position of the Se atom in the CXC motif, we have been able to show that Se is always bridging (2 Se-Cu) rather than terminal (1 Se-Cu). Substitution of both D3 Cys residues by Sec in the UAUA variant does not eliminate the Cu-S contribution, confirming our previous description of the cluster as most likely a Cu(4)S(6) species, and suggesting that D2 Cys residues contribute to the cluster. As predicted by this model, when Cys residues C141, C144, and C227 are mutated to alanine either individually or together as a triple mutant, the cluster nuclearity is dramatically attenuated. These data suggest that Cys residues in D2 of hCCS are involved in the formation, stability, and redox potential of the D3 cluster. The significance of these finding to the SOD1 thiol/disulfide oxidase activity are discussed in terms of a model in which a similar multinuclear cluster may form in the CCS-SOD heterodimer.


Subject(s)
Copper/metabolism , Cysteine/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Selenocysteine/genetics , Selenocysteine/metabolism , Superoxide Dismutase/metabolism , Alanine/genetics , Alanine/metabolism , Amino Acid Sequence , Base Sequence , Binding Sites , Cysteine/genetics , Humans , Molecular Chaperones/genetics , Molecular Sequence Data , Mutation , Protein Multimerization , Protein Structure, Tertiary , Spectrum Analysis , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism
6.
Arch Biochem Biophys ; 441(1): 64-74, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16087150

ABSTRACT

Cancer osaka thyroid (COT), a human MAP 3 K, is essential for lipopolysaccharide activation of the Erk MAPK cascade in macrophages. COT 30--467 is insoluble, whereas low levels of COT 30--397 can be expressed, but this protein is unstable. However, both COT 30--467 and COT 30--397 are expressed in a soluble and stable form when produced in complex with the C-terminal half of p105. The k(cat) of COT 30--397 is reduced approximately 47--fold in the COT 30--467/p105 Delta N complex. COT prefers Mn(2+) to Mg(2+) as the ATP metal cofactor, exhibiting an unusually high ATP K(m) in the presence of Mg(2+). When using Mn(2+) as the cofactor, the ATP K(m) is reduced to a level typical of most kinases. In contrast, the binding affinity of COT for its other substrate MEK is cofactor independent. Our results using purified proteins indicate that p105 binding improves COT solubility and stability while down-regulating kinase activity, consistent with cellular data showing that p105 functions as an inhibitor of COT.


Subject(s)
MAP Kinase Kinase Kinases/chemistry , MAP Kinase Kinase Kinases/isolation & purification , NF-kappa B/chemistry , Protein Precursors/chemistry , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/isolation & purification , Binding Sites , Enzyme Activation , Enzyme Stability , Humans , Jurkat Cells , Kinetics , MAP Kinase Kinase Kinases/genetics , NF-kappa B p50 Subunit , Protein Binding , Protein Engineering/methods , Proto-Oncogene Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...