Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Fluids Barriers CNS ; 21(1): 23, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38433215

ABSTRACT

BACKGROUND: The active transport of molecules into the brain from blood is regulated by receptors, transporters, and other cell surface proteins that are present on the luminal surface of endothelial cells at the blood-brain barrier (BBB). However, proteomic profiling of proteins present on the luminal endothelial cell surface of the BBB has proven challenging due to difficulty in labelling these proteins in a way that allows efficient purification of these relatively low abundance cell surface proteins. METHODS: Here we describe a novel perfusion-based labelling workflow: in vivo glycocapture. This workflow relies on the oxidation of glycans present on the luminal vessel surface via perfusion of a mild oxidizing agent, followed by subsequent isolation of glycoproteins by covalent linkage of their oxidized glycans to hydrazide beads. Mass spectrometry-based identification of the isolated proteins enables high-confidence identification of endothelial cell surface proteins in rats and mice. RESULTS: Using the developed workflow, 347 proteins were identified from the BBB in rat and 224 proteins in mouse, for a total of 395 proteins in both species combined. These proteins included many proteins with transporter activity (73 proteins), cell adhesion proteins (47 proteins), and transmembrane signal receptors (31 proteins). To identify proteins that are enriched in vessels relative to the entire brain, we established a vessel-enrichment score and showed that proteins with a high vessel-enrichment score are involved in vascular development functions, binding to integrins, and cell adhesion. Using publicly-available single-cell RNAseq data, we show that the proteins identified by in vivo glycocapture were more likely to be detected by scRNAseq in endothelial cells than in any other cell type. Furthermore, nearly 50% of the genes encoding cell-surface proteins that were detected by scRNAseq in endothelial cells were also identified by in vivo glycocapture. CONCLUSIONS: The proteins identified by in vivo glycocapture in this work represent the most complete and specific profiling of proteins on the luminal BBB surface to date. The identified proteins reflect possible targets for the development of antibodies to improve the crossing of therapeutic proteins into the brain and will contribute to our further understanding of BBB transport mechanisms.


Subject(s)
Blood-Brain Barrier , Proteome , Rats , Mice , Animals , Endothelial Cells , Proteomics , Brain , Microvessels , Membrane Proteins , Polysaccharides
2.
Biology (Basel) ; 12(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38132326

ABSTRACT

Cerebrovascular pathology that involves altered protein levels (or signaling) of the transforming growth factor beta (TGFß) family has been associated with various forms of age-related dementias, including Alzheimer disease (AD) and vascular cognitive impairment and dementia (VCID). Transgenic mice overexpressing TGFß1 in the brain (TGF mice) recapitulate VCID-associated cerebrovascular pathology and develop cognitive deficits in old age or when submitted to comorbid cardiovascular risk factors for dementia. We characterized the cerebrovascular proteome of TGF mice using mass spectrometry (MS)-based quantitative proteomics. Cerebral arteries were surgically removed from 6-month-old-TGF and wild-type mice, and proteins were extracted and analyzed by gel-free nanoLC-MS/MS. We identified 3602 proteins in brain vessels, with 20 demonstrating significantly altered levels in TGF mice. For total and/or differentially expressed proteins (p ≤ 0.01, ≥ 2-fold change), using multiple databases, we (a) performed protein characterization, (b) demonstrated the presence of their RNA transcripts in both mouse and human cerebrovascular cells, and (c) demonstrated that several of these proteins were present in human extracellular vesicles (EVs) circulating in blood. Finally, using human plasma, we demonstrated the presence of several of these proteins in plasma and plasma EVs. Dysregulated proteins point to perturbed brain vessel vasomotricity, remodeling, and inflammation. Given that blood-isolated EVs are novel, attractive, and a minimally invasive biomarker discovery platform for age-related dementias, several proteins identified in this study can potentially serve as VCID markers in humans.

3.
Pharmaceutics ; 15(5)2023 May 22.
Article in English | MEDLINE | ID: mdl-37242805

ABSTRACT

BACKGROUND: ATP-binding cassette (ABC) transporters comprise a superfamily of genes encoding membrane proteins with nucleotide-binding domains (NBD). These transporters, including drug efflux across the blood-brain barrier (BBB), carry a variety of substrates through plasma membranes against substrate gradients, fueled by hydrolyzing ATP. The expression patterns/enrichment of ABC transporter genes in brain microvessels compared to peripheral vessels and tissues are largely uncharacterized. METHODS: In this study, the expression patterns of ABC transporter genes in brain microvessels, peripheral tissues (lung, liver and spleen) and lung vessels were investigated using RNA-seq and WesTM analyses in three species: human, mouse and rat. RESULTS: The study demonstrated that ABC drug efflux transporter genes (including ABCB1, ABCG2, ABCC4 and ABCC5) were highly expressed in isolated brain microvessels in all three species studied; the expression of ABCB1, ABCG2, ABCC1, ABCC4 and ABCC5 was generally higher in rodent brain microvessels compared to those of humans. In contrast, ABCC2 and ABCC3 expression was low in brain microvessels, but high in rodent liver and lung vessels. Overall, most ABC transporters (with the exception of drug efflux transporters) were enriched in peripheral tissues compared to brain microvessels in humans, while in rodent species, additional ABC transporters were found to be enriched in brain microvessels. CONCLUSIONS: This study furthers the understanding of species similarities and differences in the expression patterns of ABC transporter genes; this is important for translational studies in drug development. In particular, CNS drug delivery and toxicity may vary among species depending on their unique profiles of ABC transporter expression in brain microvessels and BBB.

4.
Fluids Barriers CNS ; 20(1): 36, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37237379

ABSTRACT

Blood brain barrier (BBB) models in vitro are an important tool to aid in the pre-clinical evaluation and selection of BBB-crossing therapeutics. Stem cell derived BBB models have recently demonstrated a substantial advantage over primary and immortalized brain endothelial cells (BECs) for BBB modeling. Coupled with recent discoveries highlighting significant species differences in the expression and function of key BBB transporters, the field is in need of robust, species-specific BBB models for improved translational predictability. We have developed a mouse BBB model, composed of mouse embryonic stem cell (mESC-D3)-derived brain endothelial-like cells (mBECs), employing a directed monolayer differentiation strategy. Although the mBECs showed a mixed endothelial-epithelial phenotype, they exhibited high transendothelial electrical resistance, inducible by retinoic acid treatment up to 400 Ω cm2. This tight cell barrier resulted in restricted sodium fluorescein permeability (1.7 × 10-5 cm/min), significantly lower than that of bEnd.3 cells (1.02 × 10-3 cm/min) and comparable to human induced pluripotent stem cell (iPSC)-derived BECs (2.0 × 10-5 cm/min). The mBECs expressed tight junction proteins, polarized and functional P-gp efflux transporter and receptor mediated transcytosis (RMT) receptors; collectively important criteria for studying barrier regulation and drug delivery applications in the CNS. In this study, we compared transport of a panel of antibodies binding species selective or cross-reactive epitopes on BBB RMT receptors in both the mBEC and human iPSC-derived BEC model, to demonstrate discrimination of species-specific BBB transport mechanisms.


Subject(s)
Blood-Brain Barrier , Induced Pluripotent Stem Cells , Humans , Animals , Mice , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Mouse Embryonic Stem Cells/metabolism , Induced Pluripotent Stem Cells/physiology , Antibodies/metabolism , Transcytosis
5.
Pharmaceutics ; 14(7)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35890347

ABSTRACT

The ability of drugs and therapeutic antibodies to reach central nervous system (CNS) targets is greatly diminished by the blood-brain barrier (BBB). Receptor-mediated transcytosis (RMT), which is responsible for the transport of natural protein ligands across the BBB, was identified as a way to increase drug delivery to the brain. In this study, we characterized IGF1R5, which is a single-domain antibody (sdAb) that binds to insulin-like growth factor-1 receptor (IGF1R) at the BBB, as a ligand that triggers RMT and could deliver cargo molecules that otherwise do not cross the BBB. Surface plasmon resonance binding analyses demonstrated the species cross-reactivity of IGF1R5 toward IGF1R from multiple species. To overcome the short serum half-life of sdAbs, we fused IGF1R5 to the human (hFc) or mouse Fc domain (mFc). IGF1R5 in both N- and C-terminal mFc fusion showed enhanced transmigration across a rat BBB model (SV-ARBEC) in vitro. Increased levels of hFc-IGF1R5 in the cerebrospinal fluid and vessel-depleted brain parenchyma fractions further confirmed the ability of IGF1R5 to cross the BBB in vivo. We next tested whether this carrier was able to ferry a pharmacologically active payload across the BBB by measuring the hypothermic and analgesic properties of neurotensin and galanin, respectively. The fusion of IGF1R5-hFc to neurotensin induced a dose-dependent reduction in the core temperature. The reversal of hyperalgesia by galanin that was chemically linked to IGF1R5-mFc was demonstrated using the Hargreaves model of inflammatory pain. Taken together, our results provided a proof of concept that appropriate antibodies, such as IGF1R5 against IGF1R, are suitable as RMT carriers for the delivery of therapeutic cargos for CNS applications.

6.
FASEB J ; 36(3): e22208, 2022 03.
Article in English | MEDLINE | ID: mdl-35192204

ABSTRACT

The blood-brain barrier (BBB) prevents the majority of drugs from crossing into the brain and reaching neurons. To overcome this challenge, safe and non-invasive technologies targeting receptor-mediated pathways have been developed. In this study, three single-domain antibodies (sdAbs; IGF1R3, IGF1R4, and IGF1R5) targeting the extracellular domain of the human insulin-like growth factor-1 receptor (IGF1R), generated by llama immunization, showed enhanced transmigration across the rat BBB model (SV-ARBEC) in vitro. The rate of brain uptake of these sdAbs fused to mouse Fc (sdAb-mFc) in vivo was estimated using the fluorescent in situ brain perfusion (ISBP) technique followed by optical brain imaging and distribution volume evaluation. Compared to the brains perfused with the negative control A20.1-mFc, the brains perfused with anti-IGF1R sdAbs showed a significant increase of the total fluorescence intensity (~2-fold, p < .01) and the distribution volume (~4-fold, p < .01). The concentration curve for IGF1R4-mFc demonstrated a linear accumulation plateauing at approximately 400 µg (~1 µM), suggesting a saturable mechanism of transport. Capillary depletion and mass spectrometry analyses of brain parenchyma post-ISBP confirmed the IGF1R4-mFc brain uptake with ~25% of the total amount being accumulated in the parenchymal fraction in contrast to undetectable levels of A20.1-mFc after a 5-min perfusion protocol. Systemic administration of IGF1R4-mFc fused with the non-BBB crossing analgesic peptide galanin (2 and 5 mg/kg) induced a dose-dependent suppression of thermal hyperalgesia in the Hargreaves pain model. In conclusion, novel anti-IGF1R sdAbs showed receptor-mediated brain uptake with pharmacologically effective parenchymal delivery of non-permeable neuroactive peptides.


Subject(s)
Blood-Brain Barrier/metabolism , Receptor, IGF Type 1/immunology , Single-Chain Antibodies/pharmacokinetics , Animals , Capillary Permeability , Cell Line , Cells, Cultured , Male , Mice , Mice, Inbred BALB C , Rats , Rats, Sprague-Dawley , Single-Chain Antibodies/immunology
7.
Fluids Barriers CNS ; 17(1): 47, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32698806

ABSTRACT

Receptor-mediated transcytosis (RMT) is a principal pathway for transport of macromolecules essential for brain function across the blood-brain barrier (BBB). Antibodies or peptide ligands which bind RMT receptors are often co-opted for brain delivery of biotherapeutics. Constitutively recycling transferrin receptor (TfR) is a prototype receptor utilized to shuttle therapeutic cargos across the BBB. Several other BBB-expressed receptors have been shown to mediate transcytosis of antibodies or protein ligands including insulin receptor (INSR) and insulin-like growth factor-1 receptor (IGF1R), lipid transporters LRP1, LDLR, LRP8 and TMEM30A, solute carrier family transporter SLC3A2/CD98hc and leptin receptor (LEPR). In this study, we analyzed expression patterns of genes encoding RMT receptors in isolated brain microvessels, brain parenchyma and peripheral organs of the mouse and the human using RNA-seq approach. IGF1R, INSR and LRP8 were highly enriched in mouse brain microvessels compared to peripheral tissues. In human brain microvessels only INSR was enriched compared to either the brain or the lung. The expression levels of SLC2A1, LRP1, IGF1R, LRP8 and TFRC were significantly higher in the mouse compared to human brain microvessels. The protein expression of these receptors analyzed by Western blot and immunofluorescent staining of the brain microvessels correlated with their transcript abundance. This study provides a molecular transcriptomics map of key RMT receptors in mouse and human brain microvessels and peripheral tissues, important to translational studies of biodistribution, efficacy and safety of antibodies developed against these receptors.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Lung/metabolism , Microvessels/metabolism , Parenchymal Tissue/metabolism , Receptors, Cell Surface/metabolism , Transcytosis , Aged , Animals , Antigens, CD/metabolism , Brain/blood supply , Female , Humans , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Lung/blood supply , Male , Mice, Inbred C57BL , Parenchymal Tissue/blood supply , Receptor, IGF Type 1 , Receptors, Transferrin/metabolism , Spleen/blood supply , Spleen/metabolism
8.
Methods Mol Biol ; 2024: 153-166, 2019.
Article in English | MEDLINE | ID: mdl-31364048

ABSTRACT

Antibody-based therapeutics have emerged as novel class of biopharmaceuticals over the last couple of decades with the advancements made in production and downstream processing technologies. The structural diversity of therapeutic antibodies has also evolved with the development of bispecific (and multispecific) antibodies and antibody-drug conjugates. With increased structural complexities and multi-modularity, there is a need to demonstrate that the entire structure is stable in vivo and arriving at its target site in an intact form. Proving that antibodies reach their target site unscathed is a challenging but essential step for showing effective delivery as well as showing whether failure in efficacy (if any) was related to its in vivo instability. This chapter describes a method for highly specific immuno-isolation followed by intact mass spectrometry of human Fc-containing antibody from serum of rats dosed with the antibody. The method provides an opportunity for evaluating antibody stability in the physiological environment by providing accurate validation of its molecular mass in vivo, as well as the potential to identify breakdown products.


Subject(s)
Antibodies, Bispecific/blood , Immunoglobulin Fc Fragments/blood , Mass Spectrometry/methods , Animals , Chromatography, Liquid/methods , Humans , Rats
9.
J Neurochem ; 146(6): 735-752, 2018 09.
Article in English | MEDLINE | ID: mdl-29877588

ABSTRACT

The blood-brain barrier (BBB) is a formidable obstacle to the delivery of therapeutics to the brain. Antibodies that bind transferrin receptor (TfR), which is enriched in brain endothelial cells, have been shown to cross the BBB and are being developed as fusion proteins to deliver therapeutic cargos to brain targets. Various antibodies have been developed for this purpose and their in vivo evaluation demonstrated that either low affinity or monovalent receptor binding re-directs their transcellular trafficking away from lysosomal degradation and toward improved exocytosis on the abluminal side of the BBB. However, these studies have been performed with antibodies that recognize different TfR epitopes and have different binding characteristics, preventing inter-study comparisons. In this study, the efficiency of transcytosis in vitro and intracellular trafficking in endosomal compartments were evaluated in an in vitro BBB model for affinity variants (Kd from 5 to174 nM) of the rat TfR-binding antibody, OX26. Distribution in subcellular fractions of the rat brain endothelial cells was determined using both targeted quantitative proteomics-selected reaction monitoring and fluorescent imaging with markers of early- and late endosomes. The OX26 variants with affinities of 76 and 108 nM showed improved trancytosis (Papp values) across the in vitro BBB model compared with a 5 nM OX26. Although ~40% of the 5 nM OX26 and ~35% of TfR co-localized with late-endosome/lysosome compartment, 76 and 108 nM affinity variants showed lower amounts in lysosomes and a predominant co-localization with early endosome markers. The study links bivalent TfR antibody affinity to mechanisms of sorting and trafficking away from late endosomes and lysosomes, resulting in improvement in their transcytosis efficiency. OPEN PRACTICES: Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/ Cover Image for this issue: doi: 10.1111/jnc.14193.


Subject(s)
Antibodies/metabolism , Blood-Brain Barrier/metabolism , Receptors, Transferrin/immunology , Receptors, Transferrin/metabolism , Transcytosis/physiology , Animals , Antibodies/pharmacology , Antibody Affinity/physiology , Brain/cytology , Endosomes/drug effects , Endosomes/physiology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , In Vitro Techniques , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Lysosomal-Associated Membrane Protein 1/metabolism , Mass Spectrometry , Protein Binding/physiology , Rats , Subcellular Fractions/metabolism , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins , Red Fluorescent Protein
10.
Mol Pharm ; 15(4): 1420-1431, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29485883

ABSTRACT

The blood-brain barrier (BBB) is a formidable obstacle for brain delivery of therapeutic antibodies. However, antibodies against the transferrin receptor (TfR), enriched in brain endothelial cells, have been developed as delivery carriers of therapeutic cargoes into the brain via a receptor-mediated transcytosis pathway. In vitro and in vivo studies demonstrated that either a low-affinity or monovalent binding of these antibodies to the TfR improves their release on the abluminal side of the BBB and target engagement in brain parenchyma. However, these studies have been performed with mouse-selective TfR antibodies that recognize different TfR epitopes and have varied binding characteristics. In this study, we evaluated serum pharmacokinetics and brain and CSF exposure of the rat TfR-binding antibody OX26 affinity variants, having KDs of 5 nM, 76 nM, 108 nM, and 174 nM, all binding the same epitope in bivalent format. Pharmacodynamic responses were tested in the Hargreaves chronic pain model after conjugation of OX26 affinity variants with the analgesic and antiepileptic peptide, galanin. OX26 variants with affinities of 76 nM and 108 nM showed enhanced brain and cerebrospinal fluid (CSF) exposure and higher potency in the Hargreaves model, compared to a 5 nM affinity variant; lowering affinity to 174 nM resulted in prolonged serum pharmacokinetics, but reduced brain and CSF exposure. The study demonstrates that binding affinity optimization of TfR-binding antibodies could improve their brain and CSF exposure even in the absence of monovalent TfR engagement.


Subject(s)
Antibodies, Monoclonal/chemistry , Brain/drug effects , Galanin/chemistry , Receptors, Transferrin/chemistry , Receptors, Transferrin/metabolism , Animals , Antibodies, Monoclonal/metabolism , Antibody Affinity/physiology , Bioengineering/methods , Blood-Brain Barrier/metabolism , Brain/metabolism , Cerebrospinal Fluid/metabolism , Galanin/metabolism , Male , Protein Transport/physiology , Rats , Rats, Sprague-Dawley
11.
J Cereb Blood Flow Metab ; 38(4): 727-740, 2018 04.
Article in English | MEDLINE | ID: mdl-29140158

ABSTRACT

Current methods for examining antibody trafficking are either non-quantitative such as immunocytochemistry or require antibody labeling with tracers. We have developed a multiplexed quantitative method for antibody 'tracking' in endosomal compartments of brain endothelial cells. Rat brain endothelial cells were co-incubated with blood-brain barrier (BBB)-crossing FC5, monovalent FC5Fc or bivalent FC5Fc fusion antibodies and control antibodies. Endosomes were separated using sucrose-density gradient ultracentrifugation and analyzed using multiplexed mass spectrometry to simultaneously quantify endosomal markers, receptor-mediated transcytosis (RMT) receptors and the co-incubated antibodies in each fraction. The quantitation showed that markers of early endosomes were enriched in high-density fractions (HDF), whereas markers of late endosomes and lysosomes were enriched in low-density fractions (LDF). RMT receptors, including transferrin receptor, showed a profile similar to that of early endosome markers. The in vitro BBB transcytosis rates of antibodies were directly proportional to their partition into early endosome fractions of brain endothelial cells. Addition of the Fc domain resulted in facilitated antibody 'redistribution' from LDF into HDF and additionally into multivesicular bodies (MVB). Sorting of various FC5 antibody formats away from late endosomes and lysosomes and into early endosomes and a subset of MVB results in increased antibody transcytosis at the abluminal side of the BBB.


Subject(s)
Antibodies/metabolism , Blood-Brain Barrier/physiology , Endosomes/physiology , Transcytosis/physiology , Animals , Antibodies/cerebrospinal fluid , Antigens, CD , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Lysosomes/metabolism , Mass Spectrometry , Rats , Rats, Sprague-Dawley , Receptors, Transferrin
12.
Cochrane Database Syst Rev ; 11: CD008144, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27883365

ABSTRACT

BACKGROUND: Cancer-related fatigue is reported as the most common and distressing symptom experienced by patients with cancer. It can exacerbate the experience of other symptoms, negatively affect mood, interfere with the ability to carry out everyday activities, and negatively impact on quality of life. Educational interventions may help people to manage this fatigue or to cope with this symptom, and reduce its overall burden. Despite the importance of education for managing cancer-related fatigue there are currently no systematic reviews examining this approach. OBJECTIVES: To determine the effectiveness of educational interventions for managing cancer-related fatigue in adults. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), and MEDLINE, EMBASE, CINAHL, PsycINFO, ERIC, OTseeker and PEDro up to 1st November 2016. We also searched trials registries. SELECTION CRITERIA: We included randomised controlled trials (RCTs) of educational interventions focused on cancer-related fatigue where fatigue was a primary outcome. Studies must have aimed to evaluate the effect of educational interventions designed specifically to manage cancer-related fatigue, or to evaluate educational interventions targeting a constellation of physical symptoms or quality of life where fatigue was the primary focus. The studies could have compared educational interventions with no intervention or wait list controls, usual care or attention controls, or an alternative intervention for cancer-related fatigue in adults with any type of cancer. DATA COLLECTION AND ANALYSIS: Two review authors independently screened studies for inclusion and extracted data. We resolved differences in opinion by discussion. Trial authors were contacted for additional information. A third independent person checked the data extraction. The main outcome considered in this review was cancer-related fatigue. We assessed the evidence using GRADE and created a 'Summary of Findings' table. MAIN RESULTS: We included 14 RCTs with 2213 participants across different cancer diagnoses. Four studies used only 'information-giving' educational strategies, whereas the remainder used mainly information-giving strategies coupled with some problem-solving, reinforcement, or support techniques. Interventions differed in delivery including: mode of delivery (face to face, web-based, audiotape, telephone); group or individual interventions; number of sessions provided (ranging from 2 to 12 sessions); and timing of intervention in relation to completion of cancer treatment (during or after completion). Most trials compared educational interventions to usual care and meta-analyses compared educational interventions to usual care or attention controls. Methodological issues that increased the risk of bias were evident including lack of blinding of outcome assessors, unclear allocation concealment in over half of the studies, and generally small sample sizes. Using the GRADE approach, we rated the quality of evidence as very low to moderate, downgraded mainly due to high risk of bias, unexplained heterogeneity, and imprecision.There was moderate quality evidence of a small reduction in fatigue intensity from a meta-analyses of eight studies (1524 participants; standardised mean difference (SMD) -0.28, 95% confidence interval (CI) -0.52 to -0.04) comparing educational interventions with usual care or attention control. We found low quality evidence from twelve studies (1711 participants) that educational interventions had a small effect on general/overall fatigue (SMD -0.27, 95% CI -0.51 to -0.04) compared to usual care or attention control. There was low quality evidence from three studies (622 participants) of a moderate size effect of educational interventions for reducing fatigue distress (SMD -0.57, 95% CI -1.09 to -0.05) compared to usual care, and this could be considered clinically significant. Pooled data from four studies (439 participants) found a small reduction in fatigue interference with daily life (SMD -0.35, 95% CI -0.54 to -0.16; moderate quality evidence). No clear effects on fatigue were found related to type of cancer treatment or timing of intervention in relation to completion of cancer treatment, and there were insufficient data available to determine the effect of educational interventions on fatigue by stage of disease, tumour type or group versus individual intervention.Three studies (571 participants) provided low quality evidence for a reduction in anxiety in favour of the intervention group (mean difference (MD) -1.47, 95% CI -2.76 to -0.18) which, for some, would be considered clinically significant. Two additional studies not included in the meta-analysis also reported statistically significant improvements in anxiety in favour of the educational intervention, whereas a third study did not. Compared with usual care or attention control, educational interventions showed no significant reduction in depressive symptoms (four studies, 881 participants, SMD -0.12, 95% CI -0.47 to 0.23; very low quality evidence). Three additional trials not included in the meta-analysis found no between-group differences in the symptoms of depression. No between-group difference was evident in the capacity for activities of daily living or physical function when comparing educational interventions with usual care (4 studies, 773 participants, SMD 0.33, 95% CI -0.10 to 0.75) and the quality of evidence was low. Pooled evidence of low quality from two of three studies examining the effect of educational interventions compared to usual care found an improvement in global quality of life on a 0-100 scale (MD 11.47, 95% CI 1.29 to 21.65), which would be considered clinically significant for some.No adverse events were reported in any of the studies. AUTHORS' CONCLUSIONS: Educational interventions may have a small effect on reducing fatigue intensity, fatigue's interference with daily life, and general fatigue, and could have a moderate effect on reducing fatigue distress. Educational interventions focused on fatigue may also help reduce anxiety and improve global quality of life, but it is unclear what effect they might have on capacity for activities of daily living or depressive symptoms. Additional studies undertaken in the future are likely to impact on our confidence in the conclusions.The incorporation of education for the management of fatigue as part of routine care appears reasonable. However, given the complex nature of this symptom, educational interventions on their own are unlikely to optimally reduce fatigue or help people manage its impact, and should be considered in conjunction with other interventions. Just how educational interventions are best delivered, and their content and timing to maximise outcomes, are issues that require further research.


Subject(s)
Fatigue/etiology , Fatigue/therapy , Neoplasms/complications , Patient Education as Topic/methods , Activities of Daily Living , Adult , Anxiety/therapy , Female , Humans , Male , Middle Aged , Neoplasms/therapy , Problem Solving , Quality of Life , Randomized Controlled Trials as Topic , Reinforcement, Psychology
13.
FASEB J ; 28(11): 4764-78, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25070367

ABSTRACT

The blood-brain barrier (BBB) prevents the access of therapeutic antibodies to central nervous system (CNS) targets. The engineering of bispecific antibodies in which a therapeutic "arm" is combined with a BBB-transcytosing arm can significantly enhance their brain delivery. The BBB-permeable single-domain antibody FC5 was previously isolated by phenotypic panning of a naive llama single-domain antibody phage display library. In this study, FC5 was engineered as a mono- and bivalent fusion with the human Fc domain to optimize it as a modular brain delivery platform. In vitro studies demonstrated that the bivalent fusion of FC5 with Fc increased the rate of transcytosis (Papp) across brain endothelial monolayer by 25% compared with monovalent fusion. Up to a 30-fold enhanced apparent brain exposure (derived from serum and cerebrospinal fluid pharmacokinetic profiles) of FC5- compared with control domain antibody-Fc fusions after systemic dosing in rats was observed. Systemic pharmacological potency was evaluated in the Hargreaves model of inflammatory pain using the BBB-impermeable neuropeptides dalargin and neuropeptide Y chemically conjugated with FC5-Fc fusion proteins. Improved serum pharmacokinetics of Fc-fused FC5 contributed to a 60-fold increase in pharmacological potency compared with the single-domain version of FC5; bivalent and monovalent FC5 fusions with Fc exhibited similar systemic pharmacological potency. The study demonstrates that modular incorporation of FC5 as the BBB-carrier arm in bispecific antibodies or antibody-drug conjugates offers an avenue to develop pharmacologically active biotherapeutics for CNS indications.


Subject(s)
Antibodies, Bispecific/metabolism , Biological Products/metabolism , Blood-Brain Barrier/metabolism , Animals , Antibodies, Bispecific/immunology , Biological Transport/physiology , Brain/metabolism , Humans , Immunoconjugates/metabolism , Male , Protein Engineering/methods , Rats, Wistar , Recombinant Fusion Proteins/metabolism
14.
Fluids Barriers CNS ; 10(1): 4, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23305214

ABSTRACT

BACKGROUND: In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes) and ectosomes (originating from direct budding/shedding of plasma membranes). Extracellular microvesicles contain cell-specific collections of proteins, glycoproteins, lipids, nucleic acids and other molecules. These vesicles play important roles in intercellular communication by acting as carrier for essential cell-specific information to target cells. Endothelial cells in the brain form the blood-brain barrier, a specialized interface between the blood and the brain that tightly controls traffic of nutrients and macromolecules between two compartments and interacts closely with other cells forming the neurovascular unit. Therefore, brain endothelial cell extracellular microvesicles could potentially play important roles in 'externalizing' brain-specific biomarkers into the blood stream during pathological conditions, in transcytosis of blood-borne molecules into the brain, and in cell-cell communication within the neurovascular unit. METHODS: To study cell-specific molecular make-up and functions of brain endothelial cell exosomes, methods for isolation of extracellular microvesicles using mass spectrometry-compatible protocols and the characterization of their signature profiles using mass spectrometry -based proteomics were developed. RESULTS: A total of 1179 proteins were identified in the isolated extracellular microvesicles from brain endothelial cells. The microvesicles were validated by identification of almost 60 known markers, including Alix, TSG101 and the tetraspanin proteins CD81 and CD9. The surface proteins on isolated microvesicles could potentially interact with both primary astrocytes and cortical neurons, as cell-cell communication vesicles. Finally, brain endothelial cell extracellular microvesicles were shown to contain several receptors previously shown to carry macromolecules across the blood brain barrier, including transferrin receptor, insulin receptor, LRPs, LDL and TMEM30A. CONCLUSIONS: The methods described here permit identification of the molecular signatures for brain endothelial cell-specific extracellular microvesicles under various biological conditions. In addition to being a potential source of useful biomarkers, these vesicles contain potentially novel receptors known for delivering molecules across the blood-brain barrier.

15.
Mol Pharm ; 10(5): 1542-56, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23150993

ABSTRACT

FC5 and FC44 are single-domain antibodies (VHHs), selected by functional panning of phage-display llama VHH library for their ability to internalize human brain endothelial cells (BEC) and to transmigrate the in vitro BBB model. Quantification of brain delivery of FC5 and FC44 in vivo was challenging using classical methods because of their short plasma half-life and their loss of functionality with radioactive labeling. A highly sensitive (detection limit <2 ng/mL) and specific SRM-ILIS method to detect and quantify unlabeled VHHs in multiplexed assays was developed and applied to comparatively evaluate brain delivery of FC5 and FC44, and two control VHHs, EG2 and A20.1. FC5 and FC44 compared to control VHHs demonstrated significantly (p < 0.01) enhanced transport (50-100-fold) across rat in vitro BBB model as well as in vivo brain targeting assessed by optical imaging. The multiplexed SRM-ILIS analyses of plasma and CSF levels of codosed VHHs demonstrated that while all 4 VHHs have similar blood pharmacokinetics, only FC5 and FC44 show elevated CSF levels, suggesting that they are potential novel carriers for delivery of drugs and macromolecules across the BBB.


Subject(s)
Single-Domain Antibodies/blood , Single-Domain Antibodies/cerebrospinal fluid , Animals , Blood-Brain Barrier/immunology , Brain/immunology , Brain/metabolism , Cells, Cultured , Chromatography, High Pressure Liquid/methods , Drug Delivery Systems , Endothelial Cells/immunology , Endothelial Cells/metabolism , Humans , Immunoassay/methods , Male , Mass Spectrometry/methods , Nanotechnology , Protein Transport , Rats , Rats, Wistar , Single-Domain Antibodies/administration & dosage , Tissue Distribution
16.
Cancer Lett ; 252(2): 195-207, 2007 Jul 18.
Article in English | MEDLINE | ID: mdl-17275999

ABSTRACT

One of the cornerstones of therapy for invasive breast cancer includes the use of anthracyclines. Epirubicin, a stereoisomer of doxorubicin, is one of the commonly used anthracyclines. Anthracyclines while effective therapy for breast cancer, have their own unique toxicities, such as cardiomyopathy. l-Carnitine, a quarternary ammonium compound synthesized from methionine and lysine, is required for oxidative metabolism in mitochondria. Cardiac function is closely linked with oxidative metabolism whereby l-carnitine is an essential cofactor. A hypothesis is being investigated to determine if supplementation with carnitine in breast cancer patients treated with epirubicin will reduce the development of cardiac toxicity. We determined whether addition of l-carnitine altered the tumor cytotoxic effects of epirubicin using a number of in vitro cell viability assays in different breast cancer cell lines including BT549, MDA-MB-435, NCI-ADR-RES, MCF7 and T47D. Additionally we investigated the ability of cells to respond to l-carnitine following analysis of the expression of carnitine metabolic enzymes by RT-PCR. We determined that supplementation with l-carnitine had no effect on the ability of epirubicin to kill a variety of breast cancer cell lines. Additionally, no differences in the induction of apoptosis by epirubicin were observed. Furthermore, all cell lines examined expressed proteins required for carnitine uptake and use. Our data suggest that supplementation with l-carnitine does not impair the ability of epirubicin to kill breast cancer cells. These results suggest that supplementation with l-carnitine in patients undergoing epirubicin treatment could be safely used to reduce associated cardiotoxicities without fear that the efficacy of chemotherapy is jeopardized.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Breast Neoplasms/pathology , Carnitine/pharmacology , Epirubicin/pharmacology , Base Sequence , Blotting, Western , Carnitine/administration & dosage , Cell Line, Tumor , DNA Primers , Humans , Reverse Transcriptase Polymerase Chain Reaction
17.
Exp Cell Res ; 312(13): 2476-89, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16725139

ABSTRACT

We investigated the ability of extracellular matrix (ECM) proteins to modulate the response of endothelial cells to both promoters and inhibitors of angiogenesis. Using human dermal microvascular endothelial cells (HDMEC), we found that cells demonstrated different adhesive properties and proliferative responses to the growth factor VEGF depending upon which ECM protein with which they were in contact, with fibronectin having the most impact on VEGF-induced HDMEC proliferation and survival. More importantly, we observed that ECM could modulate the ability of the angiogenic inhibitor endostatin to prevent endothelial cell proliferation, survival and migration. We observed that growth on vitronectin or fibronectin impaired the ability of endostatin to inhibit VEGF-induced HDMEC proliferation to the greatest extent as determined by BrdU incorporation. We found that, following growth on collagen I or collagen IV, endostatin only inhibited VEGF-induced HDMEC proliferation at the highest dose tested (2500 ng/ml). In a similar manner, we observed that growth on ECM proteins modulated the ability of endostatin to induce endothelial cell apoptosis, with growth on collagen I, fibronectin and collagen IV impairing endostatin-induced apoptosis. Interestingly, endostatin inhibited VEGF-induced HDMEC migration following culture on collagen I, collagen IV and laminin, while migration was not inhibited by endostatin following HDMEC culture on other matrices including vitronectin, fibronectin and tenascin-C. These results suggest that different matrix proteins may affect different mechanisms of endostatin inhibition of angiogenesis. Taken together, our results suggest that the ECM may have a profound impact on the ability of angiostatic molecules such as endostatin to inhibit angiogenesis and thus may have impact on the clinical efficacy of such inhibitors.


Subject(s)
Endostatins/pharmacology , Endothelial Cells/cytology , Endothelial Cells/drug effects , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Apoptosis/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Collagen/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Humans , Laminin/metabolism , Phosphorylation/drug effects , Vascular Endothelial Growth Factor A/pharmacology
18.
BMC Cell Biol ; 6: 38, 2005 Oct 31.
Article in English | MEDLINE | ID: mdl-16262896

ABSTRACT

BACKGROUND: The microenvironment surrounding cells can exert multiple effects on their biological responses. In particular the extracellular matrix surrounding cells can profoundly influence their behavior. It has been shown that the extracellular matrix composition in tumors is vastly different than that found in normal tissue with increased amounts of certain matrices such as collagen I. It has been previously demonstrated that VEGF stimulation of endothelial cells growing on type I collagen results in the induction of bcl-2 expression and enhanced endothelial cell survival. We sought to investigate whether this increased endothelial cell survival resulted in the failure of angiostatic molecules to inhibit angiogenesis. RESULTS: We now demonstrate that VEGF-induced survival on collagen I impairs the ability of three known angiostatic molecules, TSP-1, IP-10 and endostatin to inhibit endothelial cell proliferation. Apoptosis of endothelial cells, growing on collagen I, induced by TSP-1 and IP-10 was also inhibited following VEGF stimulation. In contrast, endostatin induced apoptosis in these same cells. Further analysis determined that endostatin did not decrease the expression of bcl-2 nor did it increase activation of caspase-3 in the presence of VEGF. Alternatively, it appeared that in the presence of VEGF, endostatin induced the activation of caspase-8 in endothelial cells grown on collagen I. Furthermore, only endostatin had the ability to inhibit VEGF-induced sprout formation in collagen I gels. CONCLUSION: These data suggest that TSP-1, IP-10 and endostatin inhibit endothelial cells via different mechanisms and that only endostatin is effective in inhibiting angiogenic activities in the presence of collagen I. Our results suggest that the efficacy of angiostatic treatments may be impaired depending on the context of the extracellular matrix within the tumor environment and thus could impede the efficacy of angiostatic therapies.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Vascular Endothelial Growth Factor A/pharmacology , Apoptosis/drug effects , Caspases/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Chemokine CXCL10 , Collagen Type I/pharmacology , Endostatins/pharmacology , Endothelial Cells/drug effects , Extracellular Matrix Proteins/pharmacology , Humans , Proto-Oncogene Proteins c-bcl-2/analysis , Thrombospondin 1/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...