Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-502828

ABSTRACT

SARS-CoV-2 omicron BA.4 and BA.5, characterized by high transmissibility and ability to escape natural and vaccine induced immunity, are rampaging worldwide. To understand the escape mechanisms, we tested the neutralizing activity against omicron BA.4 and BA.5 of a panel of 482 human monoclonal antibodies that had been isolated from people who received two or three mRNA vaccine doses or from people that had been vaccinated after infection. None of the antibodies isolated after two vaccine doses neutralized omicron BA.4 and BA.5, while these variants were neutralized by approximately 15% of antibodies obtained from people that received three doses or had been vaccinated after infection. Remarkably, the antibodies isolated after three vaccine doses targeted mainly the receptor binding domain (RBD) Class 1/2 epitope region and were encoded by the IGHV1-69 and IGHV3-66 B cell germlines, while the antibodies isolated after infection recognized mostly the RBD Class 3 epitope region and the NTD, and were encoded by the IGHV2-5;IGHJ4-1 and IGHV1-24;IGHJ4-1 germlines. The observation that mRNA vaccination and hybrid immunity elicit a different immunity against the same antigen is intriguing and its understanding may help to design the next generation of therapeutics and vaccines against COVID-19.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-491201

ABSTRACT

The continuous evolution of SARS-CoV-2 generated highly mutated variants, like omicron BA.1 and BA.2, able to escape natural and vaccine-induced primary immunity1,2. The administration of a third dose of mRNA vaccines induces a secondary response with increased protection. We investigated, at single-cell level, the longitudinal evolution of the neutralizing antibody response in four donors after three mRNA doses3. A total of 4,100 spike protein specific memory B cells were single cell sorted and 350 neutralizing antibodies were identified. The third dose increased the antibody neutralization potency and breadth against all SARS-CoV-2 variants of concern as previously observed with hybrid immunity3. However, the B cell repertoire that stands behind the response is dramatically different. The increased neutralizing response was largely due to the expansion of B cell germlines poorly represented after two doses, and the reduction of germlines predominant after primary immunization such as IGHV3-53;IGHJ6-1 and IGHV3-66;IGHJ4-1. Divergently to hybrid immunity, cross-protection after a third dose was mainly guided by Class 1/2 antibodies encoded by IGHV1-58;IGHJ3-1 and IGHV1-69;IGHJ4-1 germlines. The IGHV2-5;IGHJ3-1 germline, which induced broadly cross-reactive Class 3 antibodies after infection or viral vector vaccination, was not induced by a third mRNA dose. Our data show that while neutralizing breadth and potency can be improved by different immunization regimens, each of them has a unique molecular signature which should be considered while designing novel vaccines and immunization strategies.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-462234

ABSTRACT

As the coronavirus disease 2019 (COVID-19) pandemic continues, there is a strong need for highly potent monoclonal antibodies (mAbs) that are resistant against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) variants of concern (VoCs). Here, we evaluate the potency of a previously described mAb J08 against these variants using cell-based assays and delve into the molecular details of the binding interaction using cryo-EM. We show that mAb J08 has low nanomolar affinity against VoCs, binds high on the receptor binding domain (RBD) ridge and is therefore unaffected by most mutations, and can bind in the RBD-up and -down conformations. These findings further validate the phase II/III human clinical trial underway using mAb J08 as a monoclonal therapy. One Sentence SummaryPotent neutralizing monoclonal antibody J08 binds SARS-CoV-2 spike independent of known escape mutations.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21261441

ABSTRACT

BackgroundThe emerging threat represented by SARS-CoV-2 variants, demands the development of therapies for better clinical management of COVID-19. MAD0004J08 is an extremely potent Fc-engineered monoclonal antibody (mAb) able to neutralise in vitro all current SARS-CoV-2 variants of concern (VoCs). This ongoing study, evaluates safety, pharmacokinetics and SARS-CoV-2 sera neutralization effect of MAD0004J08 when administered as single dose intramuscularly in healthy adults. MethodWe conducted a dose escalation study with sequential enrolment of three cohorts, each with an increasing dose level of MAD0004J08 (48mg, 100mg and 400mg). Within each cohort, 10 young healthy adults were randomized with 4:1 ratio to a single intramuscular (i.m.) injection of MAD0004J08 or placebo. The primary endpoint is the proportion of subjects with severe and/or serious treatment emergent adverse events (TEAEs) within 7 days post-treatment. Secondary endpoints reported in this paper are the proportion of subjects with solicited TEAEs up 7 days post dosing, MAD0004J08 serum concentrations and neutralising activity versus the original SARS-COV-2 Wuhan virus at different timepoints post-dosing. As post-hoc analyses, we compared the sera neutralising titres of subjects who received MAD0004J08 with those of people that had received the COVID-19 BNT162b2 mRNA vaccine in the previous sixty days (n=10) and COVID-19 convalescent patients (n=20), and assessed serum neutralisation activity against the B.1.1.7 (alpha), B.1.351 (beta) and B.1.1.248 (gamma) SARS-CoV-2 variants of concern. FindingsA total of 30 subjects, 10 per cohort, were enrolled and randomized. Data up to 30 days were available and analysed in this report. No severe TEAEs were reported in any of the cohorts in the 7 days post-treatment. MAD0004J08 was detected in the sera of treated subjects within few hours post-administration and reached almost maximal levels on day 8. The geometric mean neutralising titres (GMT) assessed against the original Wuhan virus peaked on day 8 and ranged 226 - 905, 905 - 2,560, and 1,280 - 5,120 for cohort 1, 2 and 3 respectively. The sera neutralising GMT in MAD0004J08 treated subjects in all the three cohorts were found to be 1{middle dot}5-54{middle dot}5-fold higher compared to sera from convalescent patients and 1{middle dot}83- 76{middle dot}4-fold higher compared to sera from COVID-19 vaccinees. Finally, GMT in MAD0004J08 treated subjects showed high neutralising titres versus the B.1.1.7 (alpha), B.1.351 (beta) and B.1.1.248 (gamma) SARS-CoV-2 VoCs. InterpretationA single dose administration of MAD0004J08 via i.m. route is safe and well tolerated and results in a rapid systemic distribution of the MAD0004J08 and sera neutralising titres higher than COVID-19 convalescent and vaccinated subjects. A single dose administration of MAD0004J08 is also sufficient to effectively neutralise major SARS-CoV-2 variants of concern. Based on these results, a Phase 2-3 trial is ongoing to further assess the safety, dosage, and efficacy of MAD0004J08 in asymptomatic or mild-moderate symptomatic COVID-19 patients. FundingEU Malaria Fund, Ministero dello Sviluppo Economico, Ministero della Salute, Regione Toscana, Toscana Life Sciences Sviluppo and European Research Council. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSWe searched PUBMED, MEDLINE and MedRxiv for clinical trials, meta-analyses and randomized controlled trials evaluating the antibody neutralization titres vs. different SARS-CoV-2 variants of concern obtained from subjects who received monoclonal antibodies for the treatment of COVID-19 using the following search terms: ("COVID-19" OR "SARS-CoV-2") AND ("monoclonal antibody" OR "neutralising antibody") AND ("variants" OR "variants of concern"). No relevant studies were identified. Added value of this studyThis is the first human study assessing safety, PK and neutralising potential of MAD0004J08, a monoclonal antibody against SARS-CoV-2 wild type Wuhan virus and variants of concern, administered intramuscularly at low dosages (48, 100 and 400 mg). MAD0004J08 showed to be safe and well tolerated in the tested dose range. Anti-spike antibodies were detected in the sera of tested SARS-CoV-2 negative healthy adults few hours post-injection. In addition, the sera obtained from MAD0004J08treated subjects, showed to have high neutralisation titres against the Wuhan virus, the B.1.1.7 (alpha), B.1.351 (beta) and B.1.1.248 (gamma) variants of concern. Implications of all the available evidenceA potent monoclonal antibody such as MAD0004J08, capable of neutralising multiple variants of concern of SARS-CoV-2 rapidly and long lastingly when given as a single intramuscular injection. The antibody, presently tested in a phase 2-3 efficacy trial, can be a major advancement in the prophylaxis and clinical management of COVID-19, because of its broad spectrum, ease of use in non-hospital settings and economic sustainability.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-456077

ABSTRACT

To understand the nature of the antibody response to SARS-CoV-2 vaccination, we analyzed at single cell level the B cell responses of five naive and five convalescent people immunized with the BNT162b2 mRNA vaccine. Convalescents had higher frequency of spike protein specific memory B cells and by cell sorting delivered 3,532 B cells, compared with 2,352 from naive people. Of these, 944 from naive and 2,299 from convalescents produced monoclonal antibodies against the spike protein and 411 of them neutralized the original Wuhan SARS-CoV-2 virus. More than 75% of the monoclonal antibodies from naive people lost their neutralization activity against the B.1.351 (beta) and B.1.1.248 (gamma) variants while this happened only for 61% of those from convalescents. The overall loss of neutralization was lower for the B.1.1.7 (alpha) and B.1.617.2 (delta) variants, however it was always significantly higher in those of naive people. In part this was due to the IGHV2-5;IGHJ4-1 germline, which was found only in convalescents and generated potent and broadly neutralizing antibodies. Overall, vaccination of seropositive people increases the frequency of B cells encoding antibodies with high potency and that are not susceptible to escape by any of the four variants of concern. Our data suggest that people that are seropositive following infection or primary vaccination will produce antibodies with increased potency and breadth and will be able to better control SARS-CoV-2 emerging variants.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-21260491

ABSTRACT

The massive emergence of COVID19 cases in the first phase of pandemic within an extremely short period of time suggest that an undetected earlier circulation of SARS-CoV-2 might have occurred, as documented by several papers in different countries, including a few that reported positive cases even earlier the first cases identified in Wuhan. Given the importance of this evidence, an independent evaluation was recommended. Here we report the results of SARS-CoV-2 antibodies blind retesting of blood samples collected in the prepandemic period in Italy, and in control samples collected one year before, by two independent centers. Results suggest the presence of SARS-CoV-2 antibodies in some samples collected in the prepandemic period, though the detection of IgM and/or IgG binding and neutralizing antibodies is strongly dependent on the different serological assays and thresholds employed, while being absent in control samples collected one year before. These findings highlight the importance of harmonizing serological assays for testing SARS-CoV-2 virus spreading and may contribute to a better understanding the future virus dynamics. Article Summary LineWe report the results of an independent retesting of SARS-CoV-2 antibodies in blood samples collected in prepandemic period in Italy and in matched samples collected one year before. The findings indicate the presence of IgM and/or IgG antibodies in selected samples of the prepandemic period only with different performance of serological assays used by the two centers. The results could give highlights on SARS-CoV-2 circulation in the pre-pandemic period and contribute to better predict future virus dynamic.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-21260035

ABSTRACT

To control future epidemics, discovery platforms are urgently needed, for the rapid development of diagnostic assays. Molecular diagnostic tests for COVID-19 emerged shortly after the isolation of SARS-CoV-2, however, serological tests based on antiviral antibody detection, revealing previous exposure to the virus, required longer developmental phases, due to the need for correctly folded and glycosylated antigens. The delay between the identification of a new virus and the development of reliable serodiagnostic tools limits our readiness for the control of a future epidemic. In this context, we propose the protozoan Leishmania tarentolae as an easy-to-handle micro-factory for the rapid production of viral antigens, to be used at the forefront of emerging epidemics. As a study model, we engineered L. tarentolae to express the SARS-CoV-2 Receptor Binding Domain (RBD) and report the ability of the purified RBD antigen to detect SARS-CoV-2 infection, with a sensitivity and reproducibility comparable to that of a reference antigen produced in human cells. This is the first application of an antigen produced in L. tarentolae for the serodiagnosis of a Coronaviridae infection. Based on our results, we propose L. tarentolae as an effective system for viral antigen production, even in countries that lack high-tech cell factories.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-21254534

ABSTRACT

SARS-CoV-2 pandemic is causing high morbidity and mortality burden worldwide with unprecedented strain on health care systems. To elucidate the mechanism of infection, protection, or rapid evolution until fatal outcome of the disease we performed a study in hospitalized COVID-19 patients to investigate the time course of the antibody response in relation to the outcome. In comparison we investigated the time course of the antibody response in SARS-CoV-2 asymptomatic subjects. Study results show that patients produce a strong antibody response to SARS-CoV-2 with high correlation between different viral antigens (spike protein and nucleoprotein) and among antibody classes (IgA, IgG, and IgM and neutralizing antibodies). The peak is reached by 3 weeks from hospital admission followed by a sharp decrease. No difference was observed in any parameter of the antibody classes, including neutralizing antibodies, between subjects who recovered or with fatal outcome. Only few asymptomatic subjects developed antibodies at detectable levels.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-424451

ABSTRACT

To investigate the evolution of SARS-CoV-2 in the immune population, we co-incubated authentic virus with a highly neutralizing plasma from a COVID-19 convalescent patient. The plasma fully neutralized the virus for 7 passages, but after 45 days, the deletion of F140 in the spike N-terminal domain (NTD) N3 loop led to partial breakthrough. At day 73, an E484K substitution in the receptor-binding domain (RBD) occurred, followed at day 80 by an insertion in the NTD N5 loop containing a new glycan sequon, which generated a variant completely resistant to plasma neutralization. Computational modeling predicts that the deletion and insertion in loops N3 and N5 prevent binding of neutralizing antibodies. The recent emergence in the United Kingdom and South Africa of natural variants with similar changes suggests that SARS-CoV-2 has the potential to escape an effective immune response and that vaccines and antibodies able to control emerging variants should be developed. One Sentence SummaryThree mutations allowed SARS-CoV-2 to evade the polyclonal antibody response of a highly neutralizing COVID-19 convalescent plasma.

10.
Preprint in English | bioRxiv | ID: ppbiorxiv-342428

ABSTRACT

Due to the global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent need for reliable high-throughput serological assays in order to evaluate the immunological responses against SARS-COV-2 virus and to enable population screening, as well as vaccines and drugs efficacy testing. Several serological assays for SARS-CoV-2 are now becoming available in the market. However, it has also become extremely important to have well-established assays with desirable high sensitivity and specificity. To date, the micro-neutralization (MN) assay, is currently considered the gold-standard being capable of evaluating and detecting, functional neutralizing antibodies (nAbs). Several protocols exist for microneutralization assays which vary in several steps of the protocol: cell seeding conditions, number of cells seeded, virus amount used in the infection step, virus-serum-cells incubation period etc. These potential differences account for a high degree of variability and inconsistency of the results and using a harmonized protocol for the micro-neutralization assay could potentially solve this. Given this situation, the main aim of our study was to carry out SARS-CoV-2 wild type virus MN assay in order to investigate which optimal tissue culture infective dose 50 (TCID50) infective dose in use is the most adequate choice for implementation in terms of reproducibility, standardization possibilities and comparability of results. Therefore, we assessed the MN by using two different viral infective doses: a standard dose of 100 TCID50/well and a lower dose of 25 TCID50/well. The results obtained, yielded by MN on using the lower infective dose (25 TCID50), were in line with those obtained with the standard infective dose; in some cases, however, we detected a titre that was one or two dilution steps higher, which maintained all negative samples negative. This suggesting that the lower dose can potentially have a positive impact on the detection and estimation of neutralizing antibodies present in a given sample, showing higher sensitivity but similar specificity and therefore, it would require a more accurate assessment and cross-laboratories standardisation especially when MN is employed as serological assay of choice for pre-clinical and clinical studies.

11.
Preprint in English | bioRxiv | ID: ppbiorxiv-328302

ABSTRACT

Human monoclonal antibodies are safe, preventive and therapeutic tools, that can be rapidly developed to help restore the massive health and economic disruption caused by the Covid-19 pandemic. By single cell sorting 4277 SARS-CoV-2 spike protein specific memory B cells from 14 Covid-19 survivors, 453 neutralizing antibodies were identified and 220 of them were expressed as IgG. Up to 65,9% of monoclonals neutralized the wild type virus at a concentration of >500 ng/mL, 23,6% neutralized the virus in the range of 100 - 500 ng/mL and 9,1% had a neutralization potency in the range of 10 - 100 ng/mL. Only 1,4% neutralized the authentic virus with a potency of 1-10 ng/mL. We found that the most potent neutralizing antibodies are extremely rare and recognize the RBD, followed in potency by antibodies that recognize the S1 domain, the S-protein trimeric structure and the S2 subunit. The three most potent monoclonal antibodies identified were able to neutralize the wild type and D614G mutant viruses with less than 10 ng/mL and are good candidates for the development of prophylactic and therapeutic tools against SARS-CoV-2. One Sentence SummaryExtremely potent neutralizing human monoclonal antibodies isolated from Covid-19 convalescent patients for prophylactic and therapeutic interventions.

12.
Preprint in English | bioRxiv | ID: ppbiorxiv-243717

ABSTRACT

A newly identified coronavirus, named SARS-CoV-2, emerged in December 2019 in Hubei Province, China, and quickly spread throughout the world; so far, it has caused more than 18 million cases of disease and 700,000 deaths. The diagnosis of SARS-CoV-2 infection is currently based on the detection of viral RNA in nasopharyngeal swabs by means of molecular-based assays, such as real-time RT-PCR. Furthermore, serological assays aimed at detecting different classes of antibodies constitute the best surveillance strategy for gathering information on the humoral immune response to infection and the spread of the virus through the population, in order to evaluate the immunogenicity of novel future vaccines and medicines for the treatment and prevention of COVID-19 disease. The aim of this study was to determine SARS-CoV-2-specific antibodies in human serum samples by means of different commercial and in-house ELISA kits, in order to evaluate and compare their results first with one another and then with those yielded by functional assays using wild-type virus. It is important to know the level of SARS-CoV-2-specific IgM, IgG and IgA antibodies in order to predict population immunity and possible cross-reactivity with other coronaviruses and to identify potentially infectious subjects. In addition, in a small sub-group of samples, we performed a subtyping Immunoglobulin G ELISA. Our data showed an excellent statistical correlation between the neutralization titer and the IgG, IgM and IgA ELISA response against the receptor-binding domain of the spike protein, confirming that antibodies against this portion of the virus spike protein are highly neutralizing and that the ELISA Receptor-Binding Domain-based assay can be used as a valid surrogate for the neutralization assay in laboratories which do not have Biosecurity level-3 facilities.

13.
Preprint in English | bioRxiv | ID: ppbiorxiv-078154

ABSTRACT

In the absence of approved drugs or vaccines, there is a pressing need to develop tools for therapy and prevention of Covid-19. Human monoclonal antibodies have very good probability of being safe and effective tools for therapy and prevention of SARS-CoV-2 infection and disease. Here we describe the screening of PBMCs from seven people who survived Covid-19 infection to isolate human monoclonal antibodies against SARS-CoV-2. Over 1,100 memory B cells were single-cell sorted using the stabilized prefusion form of the spike protein and incubated for two weeks to allow natural production of antibodies. Supernatants from each cell were tested by ELISA for spike protein binding, and positive antibodies were further tested for neutralization of spike binding to receptor(s) on Vero E6 cells and for virus neutralization in vitro. From the 1,167 memory B specific for SARS-CoV-2, we recovered 318 B lymphocytes expressing human monoclonals recognizing the spike protein and 74 of these were able to inhibit the binding of the spike protein to the receptor. Finally, 17 mAbs were able to neutralize the virus when assessed for neutralization in vitro. Lead candidates to progress into the drug development pipeline will be selected from the panel of neutralizing antibodies identified with the procedure described in this study. One Sentence SummaryNeutralizing human monoclonal antibodies isolated from Covid-19 convalescent patients for therapeutic and prophylactic interventions.

SELECTION OF CITATIONS
SEARCH DETAIL
...