Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22282552

ABSTRACT

BackgroundWe investigate the effects of remdesivir (RDV) treatment on intra-host SARS-CoV-2 diversity and low-frequency mutations in moderately ill hospitalized COVID-19 patients and compare them to patients without RDV treatment. MethodsSequential collections of nasopharyngeal and mid-turbinate swabs were obtained from 16 patients with and 31 patients without RDV treatment. A total of 113 samples were sequenced and mutation analyses were performed. ResultsWe did not identify any drug resistant mutations during RDV therapy. In genes encoding and associated with the replication complex, low-frequency minority variants that do not reach fixation within the sampling period were detected in 6/16 (37.5%) and 14/31 (45%) patients with and without RDV treatment respectively. We did not detect significant differences in within-host diversity and positive selection between the RDV-treated and untreated groups. ConclusionsMinimal intra-host variability and stochastic low-frequency variants detected in moderately ill patients suggests little selective pressure in patients receiving short courses of RDV. Patients undergoing short regimens of RDV therapy should continue to be monitored.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-481551

ABSTRACT

Wildlife reservoirs of SARS-CoV-2 may enable viral adaptation and spillback from animals to humans. In North America, there is evidence of unsustained spillover of SARS-CoV-2 from humans to white-tailed deer (Odocoileus virginianus), but no evidence of transmission from deer to humans. Through a biosurveillance program in Ontario, Canada we identified a new and highly divergent lineage of SARS-CoV-2 in white-tailed deer. This lineage is the most divergent SARS-CoV-2 lineage identified to date, with 76 consensus mutations (including 37 previously associated with non-human animal hosts) and signatures of considerable evolution and transmission within wildlife. Phylogenetic analysis also revealed an epidemiologically linked human case. Together, our findings represent the first clear evidence of sustained evolution of SARS-CoV-2 in white-tailed deer and of deer-to-human transmission.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-475409

ABSTRACT

The omicron variant of concern (VOC) of SARS-CoV-2 was first reported in November 2021 in Botswana and South Africa. Omicron has evolved multiple mutations within the spike protein and the receptor binding domain (RBD), raising concerns of increased antibody evasion. Here, we isolated infectious omicron from a clinical specimen obtained in Canada. The neutralizing activity of sera from 65 coronavirus disease (COVID-19) vaccine recipients and convalescent individuals against clinical isolates of ancestral SARS-CoV-2, beta, delta, and omicron VOCs was assessed. Convalescent sera from unvaccinated individuals infected by the ancestral virus during the first wave of COVID-19 in Canada (July, 2020) demonstrated reduced neutralization against beta and omicron VOCs. Convalescent sera from unvaccinated individuals infected by the delta variant (May-June, 2021) neutralized omicron to significantly lower levels compared to the delta variant. Sera from individuals that received three doses of the Pfizer or Moderna vaccines demonstrated reduced neutralization of the omicron variant relative to ancestral SARS-CoV-2. Sera from individuals that were naturally infected with ancestral SARS-CoV-2 and subsequently received two doses of the Pfizer vaccine induced significantly higher neutralizing antibody levels against ancestral virus and all VOCs. Importantly, infection alone, either with ancestral SARS-CoV-2 or the delta variant was not sufficient to induce high neutralizing antibody titers against omicron. This data will inform current booster vaccination strategies, and we highlight the need for additional studies to identify longevity of immunity against SARS-CoV-2 and optimal neutralizing antibody levels that are necessary to prevent infection and/or severe COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...