Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-459428

ABSTRACT

Cigarette smoking has multiple serious negative health consequences. However, the epidemiological relationship between cigarette smoking and SARS-CoV-2 infection is controversial; and the interaction between cigarette smoking, airway expression of the ACE2 receptor and the susceptibility of airway cells to infection is unclear. We exposed differentiated air-liquid interface cultures derived from primary human airway stem cells to cigarette smoke extract (CSE) and infected them with SARS-CoV-2. We found that CSE increased expression of full-length ACE2 (flACE2) but did not alter the expression of a Type I-interferon sensitive truncated ACE2 that lacks the capacity to bind SARS-CoV-2 or a panel of interferon-sensitive genes. Importantly, exposure to CSE did not increase viral infectivity despite the increase in flACE2. Our data are consistent with epidemiological data suggesting current smokers are not at excess risk of SARS-CoV-2 infection. This does not detract from public health messaging emphasising the excess risk of severe COVID-19 associated with smoking-related cardiopulmonary disease.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-451654

ABSTRACT

Successful development of a chemoprophylaxis against SARS-CoV-2 could provide a tool for infection prevention implementable alongside vaccination programmes. Camostat and nafamostat are serine protease inhibitors that inhibit SARS-CoV-2 viral entry in vitro but have not been characterised for chemoprophylaxis in animal models. Clinically, nafamostat is limited to intravenous delivery and while camostat is orally available, both drugs have extremely short plasma half-lives. This study sought to determine whether intranasal dosing at 5 mg/kg twice daily was able to prevent airborne transmission of SARS-CoV-2 from infected to uninfected Syrian golden hamsters. SARS-CoV-2 viral RNA was above the limits of quantification in both saline- and camostat-treated hamsters 5 days after cohabitation with a SARS-CoV-2 inoculated hamster. However, intranasal nafamostat-treated hamsters remained RNA negative for the full 7 days of cohabitation. Changes in body weight over the course of the experiment were supportive of a lack of clinical symptomology in nafamostat-treated but not saline- or camostat-treated animals. These data are strongly supportive of the utility of intranasally delivered nafamostat for prevention of SARS-CoV-2 infection and further studies are underway to confirm absence of pulmonary infection and pathological changes.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-440619

ABSTRACT

BackgroundThere are limited effective prophylactic treatments for SARS-CoV-2 infection, and limited early treatment options. Viral cell entry requires spike protein binding to the ACE2 receptor and spike cleavage by TMPRSS2, a cell surface serine protease. Targeting of TMPRSS2 by either androgen blockade or direct inhibition is already in clinical trials in early SARS-CoV-2 infection. MethodsThe likely initial cells of SARS-CoV-2 entry are the ciliated cells of the upper airway. We therefore used differentiated primary human airway epithelial cells maintained at the air-liquid interface (ALI) to test the impact of targeting TMPRSS2 on the prevention of SARS-CoV-2 infection. ResultsWe first modelled the systemic delivery of compounds. Enzalutamide, an oral androgen receptor antagonist, had no impact on SARS-Cov-2 infection. By contrast, camostat mesylate, an orally available serine protease inhibitor, blocked SARS-CoV-2 entry. However, camostat is rapidly metabolised in the circulation in vivo, and systemic bioavailability after oral dosing is low. We therefore modelled local airway administration by applying camostat to the apical surface of the differentiated ALI cultures. We demonstrated that a brief exposure to topical camostat is effective at restricting SARS-CoV-2 viral infection. ConclusionThese experiments demonstrate a potential therapeutic role for topical camostat for pre- or post-exposure prophylaxis of SARS-CoV-2, which can now be evaluated in a clinical trial.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-265496

ABSTRACT

The global outbreak of SARS-CoV-2 necessitates the rapid development of new therapies against COVID-19 infection. Here, we present the identification of 200 approved drugs, appropriate for repurposing against COVID-19. We constructed a SARS-CoV-2-induced protein (SIP) network, based on disease signatures defined by COVID-19 multi-omic datasets(Bojkova et al., 2020; Gordon et al., 2020), and cross-examined these pathways against approved drugs. This analysis identified 200 drugs predicted to target SARS-CoV-2-induced pathways, 40 of which are already in COVID-19 clinical trials(Clinicaltrials.gov, 2020) testifying to the validity of the approach. Using artificial neural network analysis we classified these 200 drugs into 9 distinct pathways, within two overarching mechanisms of action (MoAs): viral replication (130) and immune response (70). A subset of drugs implicated in viral replication were tested in cellular assays and two (proguanil and sulfasalazine) were shown to inhibit replication. This unbiased and validated analysis opens new avenues for the rapid repurposing of approved drugs into clinical trials.

SELECTION OF CITATIONS
SEARCH DETAIL
...