Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 250: 126251, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37562485

ABSTRACT

Herein, we report the high apparent piezoelectric coefficient for chitosan-poly(3-hydroxybutyrate) (CS-PHB) blend films. The structure of chitosan-poly(3-hydroxybutyrate) (CS-PHB) blend films, exploiting characteristics such as dielectric, polarization, apparent piezoelectric properties, and their dependencies on the composition, were investigated. Based on the results of XRD, SEM, FTIR, PFM, and dielectric spectroscopy measurements, the structure of CS-PHB blend films has been proposed, which consists of spheric-like inclusion formed by precipitating isotactic-PHB interface layer, which consists of syndiotactic-PHB hydrogen bonding with CS, and CS matrix. The synergistic effects of piezoelectricity and electrostriction help explain the high value of the apparent piezoelectric coefficient (d33) obtained in the blend film with 13 wt% of PHB (d33 ≈ 200 pC/N). The investigated CS-PHB blend films are a good candidate for tissue engineering applications.

2.
Sci Rep ; 7(1): 17721, 2017 12 18.
Article in English | MEDLINE | ID: mdl-29255250

ABSTRACT

This work demonstrates that the rf-sputtering technique, combined with appropriate heat treatments, is potentially effective to develop new materials and devices based on oxide-interface and strain engineering. We report a study of the structural-physical properties relationship of high crystalline quality, highly oriented and epitaxial thin films of the lead-free (K0.5Na0.5)0.985La0.005NbO3 (KNNLa) compound which were successfully deposited on Nb-doped SrTiO3 substrates, with orientations [100] (NSTO100) and [110] (NSTO110). The crystalline growth and the local ferroelectric and piezoelectric properties were evaluated by piezoresponse force microscopy combined with transmission electron microscopy and texture analysis by X-ray diffraction. Conditioned by the STO surface parameters, in the KNNLa films on NSTO100 coexist a commensurate [001]-tetragonal phase and two incommensurate [010]-monoclinic phases; while on NSTO110 the KNNLa films grew only in an incommensurate [101]-monoclinic phase. Both samples show excellent out-of-plane polarization switching patterns consistent with 180° domains walls; while for KNNLa/NSTO100 ferroelectric domains grow with the polarization pointing down, for KNNLa/NSTO110 they prefer to grow with the polarization pointing up. Comparing with previous reports on epitaxial KNN films, we find our samples to be of very high quality regarding their crystalline growth with highly ordered ferroelectric domains arrangements and, consequently, great potential for domain engineering.

3.
Nanotechnology ; 23(49): 495705, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23149480

ABSTRACT

A new resonance-tracking (RT) method using fast frequency sweeping excitation was developed for quantitative scanning probe microscopy (SPM) imaging. This method allows quantitative imaging of elastic properties and ferroelectrical domains with nanoscale resolution at high data acquisition rates. It consists of a commercial AFM system combined with a high-frequency lock-in amplifier, a programmed function generator and a fast data acquisition card. The resonance-tracking method was applied to the atomic force acoustic microscopy (AFAM) and to the piezoresponse force microscopy (PFM) modes. Plots of amplitude versus time and phase versus time for resonant spectra working with different sweeping frequencies were obtained to evaluate the response speed of the lock-in amplifier. It was proved that this resonance-tracking method allows suitable spectral acquisition at a rate of about 5 ms/pixel, which is useful for SPM imaging in a practical scanning time. In order to demonstrate the system performance, images of RT-AFAM for TiN films and RT-PFM for GeTe are shown.


Subject(s)
Image Enhancement/instrumentation , Micro-Electrical-Mechanical Systems/instrumentation , Microscopy, Acoustic/instrumentation , Microscopy, Atomic Force/instrumentation , Microscopy, Scanning Probe/instrumentation , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...