Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
EBioMedicine ; 103: 105118, 2024 May.
Article in English | MEDLINE | ID: mdl-38614011

ABSTRACT

BACKGROUND: Microplastic (MP) pollution has emerged as a significant environmental concern worldwide. While extensive research has focused on their presence in marine organisms and ecosystems, their potential impact on human health, particularly on the circulatory system, remains understudied. This project aimed to identify and quantify the mass concentrations, polymer types, and physical properties of MPs in human thrombi surgically retrieved from both arterial and venous systems at three anatomically distinct sites, namely, cerebral arteries in the brain, coronary arteries in the heart, and deep veins in the lower extremities. Furthermore, this study aimed to investigate the potential association between the levels of MPs and disease severity. METHODS: Thrombus samples were collected from 30 patients who underwent thrombectomy procedures due to ischaemic stroke (IS), myocardial infarction (MI), or deep vein thrombosis (DVT). Pyrolysis-gas chromatography mass spectrometry (Py-GC/MS) was employed to identify and quantify the mass concentrations of the MPs. Laser direct infrared (LDIR) spectroscopy and scanning electron microscopy (SEM) were used to analyse the physical properties of the MPs. Demographic and clinical information were also examined. A rigorous quality control system was used to eliminate potential environmental contamination. FINDINGS: MPs were detected by Py-GC/MS in 80% (24/30) of the thrombi obtained from patients with IS, MI, or DVT, with median concentrations of 61.75 µg/g, 141.80 µg/g, and 69.62 µg/g, respectively. Among the 10 target types of MP polymers, polyamide 66 (PA66), polyvinyl chloride (PVC), and polyethylene (PE) were identified. Further analyses suggested that higher concentrations of MPs may be associated with greater disease severity (adjusted ß = 7.72, 95% CI: 2.01-13.43, p < 0.05). The level of D-dimer in the MP-detected group was significantly higher than that in the MP-undetected group (8.3 ± 1.5 µg/L vs 6.6 ± 0.5 µg/L, p < 0.001). Additionally, LDIR analysis showed that PE was dominant among the 15 types of identified MPs, accounting for 53.6% of all MPs, with a mean diameter of 35.6 µm. The shapes of the polymers detected using LDIR and SEM were found to be heterogeneous. INTERPRETATION: This study presents both qualitative and quantitative evidence of the presence of MPs, and their mass concentrations, polymer types, and physical properties in thrombotic diseases through the use of multimodal detection methods. Higher concentrations of MPs may be associated with increased disease severity. Future research with a larger sample size is urgently needed to identify the sources of exposure and validate the observed trends in the study. FUNDING: This study was funded by the SUMC Scientific Research Initiation Grant (SRIG, No. 009-510858038), Postdoctoral Research Initiation Grant (No. 202205230031-3), and the 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant (No. 2020LKSFG02C).


Subject(s)
Microplastics , Thrombosis , Humans , Female , Male , Middle Aged , Aged , Thrombosis/metabolism , Thrombosis/pathology , Adult , Gas Chromatography-Mass Spectrometry , Aged, 80 and over
2.
Biotechnol Adv ; 59: 107983, 2022 10.
Article in English | MEDLINE | ID: mdl-35588952

ABSTRACT

In recent years, extracellular vesicles (EVs), specifically exosomes, have emerged as a promising strategy for treating a wide spectrum of pathologies, such as cancer and COVID-19, as well as promoting tissue regeneration in various conditions, including cardiomyopathies and spinal cord injuries. Despite the great potential of EV-based therapies, poor yield and unscalable production of EVs remain big challenges to overcome to translate these types of treatment to clinical practices. Here, we review different strategies for enhancing EV yield by physical, biological or chemical means. Some of these novel approaches can lead to about 100-fold increase in EV production yield, thus bringing closer the clinical translation with regard to scalability and efficiency.


Subject(s)
COVID-19 , Exosomes , Extracellular Vesicles , Neoplasms , Humans
3.
Curr Opin Biotechnol ; 73: 188-197, 2022 02.
Article in English | MEDLINE | ID: mdl-34481245

ABSTRACT

A growing number of technologies are being developed to promote vascularization and innervation in engineered tissues. Organ-on-a-chip, organoid and 3D printing technologies, as well as pre-vascularized and oriented scaffolds, have been employed for vascularization and innervation of engineered tissues both in vivo and in vitro. Both vascularization and innervation are critical for neural tissue engineering, as these complex tissues require provision of both blood and nerves. As such, this review will have particular focus on neural tissue engineering. We examine state-of-the-art approaches for tissue vascularization and innervation and identify promising methods for developing vascularized and innervated engineered neural constructs.


Subject(s)
Printing, Three-Dimensional , Tissue Engineering , Tissue Engineering/methods , Tissue Scaffolds
4.
ACS Biomater Sci Eng ; 8(1): 232-241, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34905338

ABSTRACT

In the field of tissue engineering, evaluating newly formed vascular networks is considered a fundamental step in deciphering the processes underlying tissue development. Several common modalities exist to study vessel network formation and function. However, a proper methodology that allows through three-dimensional visualization of neovessels in a reproducible manner is required. Here, we describe in-depth exploration, visualization, and analysis of vessels within newly formed tissues by utilizing a contrast agent perfusion protocol and high-resolution microcomputed tomography. Bioengineered constructs consisting of porous, biocompatible, and biodegradable scaffolds are loaded with cocultures of adipose-derived microvascular endothelial cells (HAMECs) and dental pulp stem cells (DPSCs) and implanted in a rat femoral bundle model. After 14 days of in vivo maturation, we performed the optimized perfusion protocol to allow host penetrating vascular visualization and assessment within neotissues. Following high-resolution microCT scanning of DPSC:HAMEC explants, we performed the volumetric and spatial analysis of neovasculature. Eventually, the process was repeated with a previously published coculture system for prevascularization based on adipose-derived mesenchymal stromal cells (MSCs) and HAMECs. Overall, our approach allows a comprehensive understanding of vessel organization during engraftment and development of neotissues.


Subject(s)
Endothelial Cells , Mesenchymal Stem Cells , Adipose Tissue/diagnostic imaging , Animals , Rats , Tissue Engineering , X-Ray Microtomography
5.
Polymers (Basel) ; 13(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34960938

ABSTRACT

Polyimide (PI) can be used as a cladding insulation for high frequency power transformers, and along-side discharge can lead to insulation failure, so material modification techniques are used. In this paper, different doped nano-SiO2 are introduced into polyimide for nanocomposite modification. The results of testing the life time of high-frequency electrical stress along-side discharge show that the 10% SiO2 doping has the longest life time. The results show that: for composites prone to corona, their flashover causes more damage, and both positive half-cycle and polarity reversal discharges are more violent; compared to pure PI, the positive half-cycle and overall discharge amplitude and number of modified films are smaller, but the negative half-cycle is larger; at creeping development stages, the number of discharges is smaller, and the discharge amplitude of both films fluctuates in the mid-term, with the modified films having fewer discharges and the PI films discharging more violently in the later stages. The increase in the intensity of the discharge was greater in the later stages, and the amplitude and number of discharges were much higher than those of the modified film, which led to a rapid breakdown of the pure polyimide film. Further research found that resistivity plays an important role in the structural properties of the material in the middle and late stages, light energy absorption in the modified film plays an important role, the distribution of traps also affects the discharge process, and in the late stages of the discharge, the heating of the material itself has a greater impact on the breakdown, so the pure polyimide film as a whole discharges more severely and has the shortest life.

6.
Cells ; 10(8)2021 07 23.
Article in English | MEDLINE | ID: mdl-34440641

ABSTRACT

Spinal cord injury (SCI) is a debilitating condition, often leading to severe motor, sensory, or autonomic nervous dysfunction. As the holy grail of regenerative medicine, promoting spinal cord tissue regeneration and functional recovery are the fundamental goals. Yet, effective regeneration of injured spinal cord tissues and promotion of functional recovery remain unmet clinical challenges, largely due to the complex pathophysiology of the condition. The transplantation of various cells, either alone or in combination with three-dimensional matrices, has been intensively investigated in preclinical SCI models and clinical trials, holding translational promise. More recently, a new paradigm shift has emerged from cell therapy towards extracellular vesicles as an exciting "cell-free" therapeutic modality. The current review recapitulates recent advances, challenges, and future perspectives of cell-based spinal cord tissue engineering and regeneration strategies.


Subject(s)
Extracellular Vesicles/transplantation , Nerve Regeneration , Neural Stem Cells/transplantation , Spinal Cord Injuries/surgery , Spinal Cord/physiopathology , Stem Cell Transplantation , Tissue Engineering , Animals , Extracellular Vesicles/metabolism , Humans , Neural Stem Cells/metabolism , Neurogenesis , Phenotype , Recovery of Function , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Stem Cell Transplantation/adverse effects , Stem Cell Transplantation/instrumentation , Tissue Scaffolds
7.
Front Public Health ; 9: 558565, 2021.
Article in English | MEDLINE | ID: mdl-33791264

ABSTRACT

Background: The world faced crises of prevention and control and shortage of medical resources during the COVID-19 (Corona Virus Disease 2019) outbreak. The establishment of temporary integrated isolation wards in hospitals, which is universal and representative in China, is one of the most-effective strategies in solving these problems according to China's experiences. Aim: To conduct a preliminary study on the establishment of a temporary integrated isolation ward during the outbreak of COVID-19 and to evaluate related impact. Methods: SWOT analysis was used to analyze the advantages, disadvantages, opportunities, and risks in the establishment of the temporary integrated isolation ward, and corresponding corrective measures were made according to the analysis results. Findings: The ward has formulated more than 10 related work procedures and prevention and control measures. A total of 93 patients with 18 critically ill patients were admitted for treatment and isolation. They were all evaluated based on established procedures and protocols. Twenty-four supplementary nucleic acid tests were ordered and conducted. One new patient with COVID-19 was confirmed and was successfully transferred to the designated COVID-19 infectious control hospital. There were no missed diagnosis or misdiagnosis, no cross-infection of patients, no cluster outbreak, and no infection of medical workers during the entire process. Conclusion: SWOT analysis is helpful in guiding the establishment of a temporary integrated isolation ward and the formulation of prevention and control measures in Hebei General Hospital during the COVID-19 outbreak. It provides the guidance and reference of significance for the establishment of similar types of wards in the future.


Subject(s)
COVID-19/prevention & control , Infection Control , Patient Isolation , China/epidemiology , Disease Outbreaks , Hospitals , Humans
8.
Nano Lett ; 21(6): 2497-2504, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33709717

ABSTRACT

Extracellular vesicles (EVs) have emerged as a promising strategy to promote tissue regeneration. However, overcoming the low EV production yield remains a big challenge in translating EV-based therapies to the clinical practice. Current EV production relies heavily on 2D cell culture, which is not only less physiologically relevant to cells but also requires substantial medium and space. In this study, we engineered tissues seeded with stem cells from dental pulp or adipose tissues, or skeletal muscle cells, and significantly enhanced the EV production yield by applying mechanical stimuli, including flow and stretching, in bioreactors. Further mechanistic investigation revealed that this process was mediated by yes-associated protein (YAP) mechanosensitivity. EVs from mechanically stimulated dental pulp stem cells on 3D scaffolds displayed superior capability in inducing axonal sprouting than the 2D counterparts. Our results demonstrate the promise of this strategy to boost EV production and optimize their functional performance toward clinical translation.


Subject(s)
Extracellular Vesicles , Cell Culture Techniques , Stem Cells , Tissue Engineering
9.
Polymers (Basel) ; 14(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35012168

ABSTRACT

High-frequency power transformers are conducive to the reliable grid connection of distributed energy sources. Polyimide is often used for the coating insulation of high-frequency power transformers. However, creeping discharge will cause insulation failure, therefore, it is necessary to use disiloxane for the purpose of modifying the molecular structure of polyimide. This paper not only introduces 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (GAPD) with a molar content of 1%, 2%, and 5% to polyimide, but also tests both the physical and chemical properties of the modified film and the high frequency creeping dielectric strength. The results show that after adding GAPD, the overall functional groups of the material do not change, at the same time the transfer complexation of intermolecular charge and the absorption of ultraviolet light increase. There is no phase separation of the material and the structure is more regular and ordered, moreover the crystallinity increases. The overall dielectric constant and the dielectric loss tangent value show different trends, which means that the former value increases, while the latter value decreases. In addition, the resistivity of the surface and the volume increase, which is the same as the glass transition temperature. The mechanical properties are excellent, and the strength of bulk breakdown is mounting. The insulation strength of the high frequency creeping surface has been improved, which will increase with larger contents of GAPD. Among them, the relative change of the creeping flashover voltage is not obvious, and the creeping discharge life of G5 is 4.77 times that of G0. Further analysis shows that the silicon-oxygen chain links of the modified film forms a uniformly dispersed Si-O-Si network in the matrix through chemical bonds and charge transfer complexation. Once the outer matrix is destroyed, it will produce dispersed flocculent inorganic particles which have the role of protecting the inner material and improving the performance of the material. Combined with the ultraviolet light energy absorption, the increase of deep traps, the reduction of dielectric loss, and the improvement of thermodynamic performance, can better improve the high-frequency creeping insulation strength of polyimide film and its potential application value.

10.
Adv Healthc Mater ; 9(20): e2000974, 2020 10.
Article in English | MEDLINE | ID: mdl-32902147

ABSTRACT

The regeneration of injured spinal cord is hampered by the lack of vascular supply and neurotrophic support. Transplanting tissue-engineered constructs with developed vascular networks and neurotrophic factors, and further understanding the pattern of vessel growth in the remodeled spinal cord tissue are greatly desired. To this end, highly vascularized scaffolds embedded with human dental pulp stem cells (DPSCs) are fabricated, which possess paracrine-mediated angiogenic and neuroregenerative potentials. The potent pro-angiogenic effect of the prevascularized scaffolds is first demonstrated in a rat femoral bundle model, showing robust vessel growth and blood perfusion induced within these scaffolds postimplantation, as evidenced by laser speckle contrast imaging and 3D microCT dual imaging modalities. More importantly, in a rat complete spinal cord transection model, the implantation of these scaffolds to the injured spinal cords can also promote revascularization, as well as axon regeneration, myelin deposition, and sensory recovery. Furthermore, 3D microCT imaging and novel morphometric analysis on the remodeled spinal cord tissue demonstrate substantial regenerated vessels, more significantly in the sensory tract regions, which correlates with behavioral recovery following prevascularization treatment. Taken together, prevascularized DPSC-embedded constructs bear angiogenic and neurotrophic potentials, capable of augmenting and modulating SCI repair.


Subject(s)
Nerve Regeneration , Spinal Cord Injuries , Animals , Axons , Dental Pulp , Humans , Rats , Spinal Cord , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/therapy , Stem Cells , Tissue Scaffolds
11.
Biomaterials ; 251: 120062, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32388032

ABSTRACT

Biodegradable polyesters have been extensively used for preparation of nerve guidance scaffolds, due to their high biocompatibility and defined degradation periods. However, conventional methods for fabrication of porous polyester scaffolds provide limited control over shape and micro-architecture. Here, a fabrication procedure based on 3D printing was developed to generate highly ordered and anatomically personalized, polyester scaffolds for soft tissue regeneration. Scaffolds composed of Poly-lactic-glycolic acid (PLGA) and poly-L-lactic acid (PLLA) were specifically customized for nerve injuries. This was obtained by using an oriented multi-layer printing pattern which established a linear structure in the fabricated scaffolds to match the aligned topography of nerve tissues. The oriented scaffold was shown to guide regenerating axons to linear conformations and support growth of induced pluripotent stem cell-derived neurons in vitro and in vivo in a model of spinal cord injury. The described scaffolds may advance the field of nerve regeneration. Furthermore, modifications could be integrated to generate soft implants for various types of tissues.

12.
Bio Protoc ; 10(11): e3635, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-33659306

ABSTRACT

Exosomes, a subtype of extracellular vesicles, are nanovesicles of endocytic origin. Exosomes contain a plethora of proteins, lipids, and genetic materials of parent cells to facilitate intercellular communications. Tracking exosomes in vivo is fundamentally important to understand their biodistribution pattern and the mechanism of biological actions in experimental models. Until now, a number of tracking protocols have been developed, including fluorescence labeling, bioluminescence imaging, magnetic resonance imaging, and computed tomography (CT) tracking of exosomes. Recently, we have shown the tracking and quantification of exosomes in a spinal cord injury model, by using two tracking approaches. More specifically, following intranasal administration of gold nanoparticle-encapsulated exosomes to rats bearing complete spinal cord injury, exosomes in the whole central nervous system were tracked by using microCT, and quantified by using inductively coupled plasma and flame atomic absorption spectroscopy. In addition, optical imaging of fluorescently labeled exosomes was performed to understand the abundance of migrating exosomes in the spinal cord lesion, as compared to the healthy controls, and to further examine their affinity to different cell types in the lesion. Thus, the protocol presented here aids in the study of exosome biodistribution at both cellular and organ levels, in the context of spinal cord injury. This protocol will also enable researchers to better elucidate the fate of administered exosomes in other models of interest.

13.
ACS Nano ; 13(9): 10015-10028, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31454225

ABSTRACT

Individuals with spinal cord injury (SCI) usually suffer from permanent neurological deficits, while spontaneous recovery and therapeutic efficacy are limited. Here, we demonstrate that when given intranasally, exosomes derived from mesenchymal stem cells (MSC-Exo) could pass the blood brain barrier and migrate to the injured spinal cord area. Furthermore, MSC-Exo loaded with phosphatase and tensin homolog small interfering RNA (ExoPTEN) could attenuate the expression of PTEN in the injured spinal cord region following intranasal administrations. In addition, the loaded MSC-Exo considerably enhanced axonal growth and neovascularization, while reducing microgliosis and astrogliosis. The intranasal ExoPTEN therapy could also partly improve structural and electrophysiological function and, most importantly, significantly elicited functional recovery in rats with complete SCI. The results imply that intranasal ExoPTEN may be used clinically to promote recovery for SCI individuals.


Subject(s)
Exosomes/transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , PTEN Phosphohydrolase/metabolism , RNA, Small Interfering/metabolism , Recovery of Function , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Administration, Intranasal , Animals , Axons/pathology , Blood-Brain Barrier/pathology , Chemotaxis , Electrophysiological Phenomena , Exosomes/ultrastructure , Female , Ganglia, Spinal/pathology , Gold/chemistry , Humans , Magnetic Resonance Imaging , Motor Activity , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Neurons/pathology , Rats, Sprague-Dawley , Spinal Cord/pathology
14.
Article in English | MEDLINE | ID: mdl-29404324

ABSTRACT

Today, in vitro vessel network systems frequently serve as models for investigating cellular and functional mechanisms underlying angiogenesis and vasculogenesis. Understanding the cues triggering the observed cell migration, organization, and differentiation, as well as the time frame of these processes, can improve the design of engineered microvasculature. Here, we present first evidence of the migration of endothelial cells into the depths of the scaffold, where they formed blood vessels surrounded by extracellular matrix and supporting cells. The supporting cells presented localization-dependent phenotypes, where cells adjacent to blood vessels displayed a more mature phenotype, with smooth muscle cell characteristics, whereas cells on the scaffold surface showed a pericyte-like phenotype. Yes-associated protein (YAP), a transcription activator of genes involved in cell proliferation and tissue growth, displayed spatially dependent expression, with cells on the surface showing more nuclear YAP than cells situated deeper within the scaffold.

15.
Front Neurosci ; 11: 589, 2017.
Article in English | MEDLINE | ID: mdl-29163001

ABSTRACT

Spinal cord injury (SCI), involving damaged axons and glial scar tissue, often culminates in irreversible impairments. Achieving substantial recovery following complete spinal cord transection remains an unmet challenge. Here, we report of implantation of an engineered 3D construct embedded with human oral mucosa stem cells (hOMSC) induced to secrete neuroprotective, immunomodulatory, and axonal elongation-associated factors, in a complete spinal cord transection rat model. Rats implanted with induced tissue engineering constructs regained fine motor control, coordination and walking pattern in sharp contrast to the untreated group that remained paralyzed (42 vs. 0%). Immunofluorescence, CLARITY, MRI, and electrophysiological assessments demonstrated a reconnection bridging the injured area, as well as presence of increased number of myelinated axons, neural precursors, and reduced glial scar tissue in recovered animals treated with the induced cell-embedded constructs. Finally, this construct is made of bio-compatible, clinically approved materials and utilizes a safe and easily extractable cell population. The results warrant further research with regards to the effectiveness of this treatment in addressing spinal cord injury.

16.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 11): o1221-2, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25484840

ABSTRACT

In the crystal of the title hydrated salt, C6H7N4 (+)·C4H5O6 (-)·0.5H2O, the bi-imidazole monocation, 1H,1'H-[2,2'-biimidazol]-3-ium, is hydrogen bonded, via N-H⋯O, O-H⋯O and O-H⋯N hydrogen bonds, to the hydrogen tartrate anion and the water mol-ecule, which is located on a twofold rotation axis, forming sheets parallel to (001). The sheets are linked via C-H⋯O hydrogen bonds, forming a three-dimensional structure. There are also C=O⋯π inter-actions present [O⋯π distances are 3.00 (9) and 3.21 (7) Å], involving the carbonyl O atoms and the imidazolium ring, which may help to consolidate the structure. In the cation, the dihedral angle between the rings is 11.6 (2)°.

SELECTION OF CITATIONS
SEARCH DETAIL
...