Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(12): 3614-3623, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38497742

ABSTRACT

Broad-spectrum antiviral platforms are always desired but still lack the ability to cope with the threats to global public health. Herein, we develop a poly aptamer encoded DNA nanocatcher platform that can trap entire virus particles to inhibit infection with a broad antiviral spectrum. Ultralong single-stranded DNA (ssDNA) containing repeated aptamers was synthesized as the scaffold of a nanocatcher via a biocatalytic process, wherein mineralization of magnesium pyrophosphate on the ssDNA could occur and consequently lead to the formation of nanocatcher with interfacial nanocaves decorated with virus-binding aptamers. Once the viruses were recognized by the apatmers, they would be captured and trapped in the nanocaves via multisite synergistic interactions. Meanwhile, the size of nanocatchers was optimized to prevent their cellular uptake, which further guaranteed inhibition of virus infection. By taking SARS-CoV-2 variants as a model target, we demonstrated the broad virus-trapping capability of a DNA nanocatcher in engulfing the variants and blocking the infection to host cells.


Subject(s)
Aptamers, Nucleotide , Viruses , Aptamers, Nucleotide/pharmacology , DNA, Single-Stranded , Antiviral Agents/pharmacology
2.
J Virol ; 96(24): e0124522, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36468859

ABSTRACT

The global spread of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the continuously emerging new variants underscore an urgent need for effective therapeutics for the treatment of coronavirus disease 2019 (COVID-19). Here, we screened several FDA-approved amphiphilic drugs and determined that sertraline (SRT) exhibits potent antiviral activity against infection of SARS-CoV-2 pseudovirus (PsV) and authentic virus in vitro. It effectively inhibits SARS-CoV-2 spike (S)-mediated cell-cell fusion. SRT targets the early stage of viral entry. It can bind to the S1 subunit of the S protein, especially the receptor binding domain (RBD), thus blocking S-hACE2 interaction and interfering with the proteolysis process of S protein. SRT is also effective against infection with SARS-CoV-2 PsV variants, including the newly emerging Omicron. The combination of SRT and other antivirals exhibits a strong synergistic effect against infection of SARS-CoV-2 PsV. The antiviral activity of SRT is independent of serotonin transporter expression. Moreover, SRT effectively inhibits infection of SARS-CoV-2 PsV and alleviates the inflammation process and lung pathological alterations in transduced mice in vivo. Therefore, SRT shows promise as a treatment option for COVID-19. IMPORTANCE The study shows SRT is an effective entry inhibitor against infection of SARS-CoV-2, which is currently prevalent globally. SRT targets the S protein of SARS-CoV-2 and is effective against a panel of SARS-CoV-2 variants. It also could be used in combination to prevent SARS-CoV-2 infection. More importantly, with long history of clinical use and proven safety, SRT might be particularly suitable to treat infection of SARS-CoV-2 in the central nervous system and optimized for treatment in older people, pregnant women, and COVID-19 patients with heart complications, which are associated with severity and mortality of COVID-19.


Subject(s)
Antiviral Agents , COVID-19 , SARS-CoV-2 , Sertraline , Spike Glycoprotein, Coronavirus , Animals , Humans , Mice , Antiviral Agents/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sertraline/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Virus Internalization/drug effects
3.
ACS Appl Bio Mater ; 5(8): 3795-3805, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35848282

ABSTRACT

Multidrug resistance (MDR) in cancer cells is a substantial limitation to the success of chemotherapy. The spatio-temporal controlled gene-chemo therapeutics strategy is expected to surmount the limitation of MDR. We herein develop a DNA nanocomplex to achieve intrinsic stimuli-responsive spatio-temporal controlled gene-chemo drug delivery, overcoming MDR of cancer cells. The drug delivery system consisted of a restriction endonuclease (HhaI)-degradable DNA hydrogel layer, an acid-responsive HhaI nanocapsule (HhaI-GDA), and a glutathione (GSH)-sensitive dendritic mesoporous organosilica nanoparticle (DMON). The DNA hydrogel layer consisted of a DNA network formed through interfacial assembly from ultralong single-stranded DNA (ssDNA), which contained multiple tandem repeated antisense oligonucleotides (ASOs). DMON had dendritic mesopores for enhanced loading of anti-tumor drug doxorubicin (DOX). Upon cellular uptake of the DNA nanocomplex, the GDA shell was degraded at a lysosomal microenvironment, and the activity of HhaI was activated, leading to accurate cleavage ultralong ssDNA to release ASO as gene drugs, which down-regulated the expression of MDR-related P glycoprotein. Spatio-temporal sequentially, DMONs containing disulfide bonds responded to intracellular GSH to release DOX for enhanced chemotherapy.


Subject(s)
Nanocapsules , Neoplasms , DNA , Doxorubicin/pharmacology , Drug Delivery Systems , Drug Resistance, Multiple/genetics , Glutathione , Hydrogels , Neoplasms/drug therapy
4.
Article in English | MEDLINE | ID: mdl-34463046

ABSTRACT

Deoxyribonucleic acid (DNA) has been an emerging building block to construct functional biomaterials. Due to their programmable sequences and rich responsiveness, DNA has attracted rising attention in the construction of intelligent nanomaterials with predicable nanostructure and adjustable functions, which has shown great potential in drug delivery. On the one hand, the DNA sequences with molecule recognition, responsiveness, and therapeutic efficacy can be easily integrated to the framework of DNA nanomaterials by sequence designing; on the other hand, the rich chemical groups on DNA molecules provide binding points for other functional units. In this review, we divided the functionalization modules in the construction of DNA nanomaterials into three types, including targeting modules, responsive modules, and therapeutic modules. Based on these modules, five DNA kinds of representative nanomaterials applied in drug delivery were introduced, including DNA nanogel, DNA origami, DNA framework, DNA nanoflower, and DNA hybrid nanosphere. Finally, we discussed the challenges in the transition of DNA materials to clinical applications. We expect that this review can help readers to obtain a deeper understanding of DNA materials, and further promote the development of these intelligent materials to real world's application. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Subject(s)
Nanostructures , Pharmaceutical Preparations , Biocompatible Materials , DNA , Nanotechnology
5.
Mol Metab ; 48: 101203, 2021 06.
Article in English | MEDLINE | ID: mdl-33676027

ABSTRACT

OBJECTIVE: Mitochondrial aconitase (ACO2) is an essential enzyme that bridges the TCA cycle and lipid metabolism. However, its role in cancer development remains to be elucidated. The metabolic subtype of colorectal cancer (CRC) was recently established. We investigated ACO2's potential role in CRC progression through mediating metabolic alterations. METHODS: We compared the mRNA and protein expression of ACO2 between paired CRC and non-tumor tissues from 353 patients. Correlations between ACO2 levels and clinicopathological features were examined. CRC cell lines with knockdown or overexpression of ACO2 were analyzed for cell proliferation and tumor growth. Metabolomics and stable isotope tracing analyses were used to study the metabolic alterations induced by loss of ACO2. RESULTS: ACO2 decreased in >50% of CRC samples compared with matched non-tumor tissues. Decreased ACO2 levels correlated with advanced disease stage (P < 0.001) and shorter patient survival (P < 0.001). Knockdown of ACO2 in CRC cells promoted cell proliferation and tumor formation, while ectopic expression of ACO2 restrained tumor growth. Specifically, blockade of ACO2 caused a reduction in TCA cycle intermediates and suppression of mitochondrial oxidative phosphorylation, resulting in an increase in glycolysis and elevated citrate flux for fatty acid and lipid synthesis. Increased citrate flux induced upregulation of stearoyl-CoA desaturase (SCD1), which enhanced lipid desaturation in ACO2-deficent cells to favor colorectal cancer growth. Pharmacological inhibition of SCD selectively reduced tumor formation of CRC with ACO2 deficiency. CONCLUSIONS: Our study demonstrated that the rewiring metabolic pathway maintains CRC survival during compromised TCA cycles and characterized the therapeutic vulnerability of lipid desaturation in a meaningful subset of CRC with mitochondrial dysfunction.


Subject(s)
Aconitate Hydratase/metabolism , Carcinogenesis/genetics , Colorectal Neoplasms/metabolism , Disease Progression , Fatty Acids/biosynthesis , Lipogenesis/genetics , Signal Transduction/genetics , Stearoyl-CoA Desaturase/metabolism , Aconitate Hydratase/genetics , Animals , Cell Proliferation/genetics , Citric Acid Cycle/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Female , Gene Knockdown Techniques , HCT116 Cells , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Middle Aged , RNA, Messenger/genetics , Transfection , Tumor Burden/drug effects , Tumor Burden/genetics , Xenograft Model Antitumor Assays
6.
Anal Chem ; 90(11): 6936-6944, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29707954

ABSTRACT

Lipidomics is a significant way to understand the structural and functional roles that lipids play in biological systems. Although many mass spectrometry (MS)-based lipidomics strategies have recently achieve remarkable results, in vivo, in situ, and microscale lipidomics for small biological organisms and cells have not yet been obtained. In this article, we report a novel lipidomics methodology for in vivo, in situ, and microscale investigation of small biological organisms and cells using biocompatible surface-coated probe nanoelectrospray ionization mass spectrometry (BSCP-nanoESI-MS). A novel biocompatible surface-coated solid-phase microextration (SPME) probe is prepared, which possesses a probe-end diameter of less than 5 µm and shows excellent enrichment capacity toward lipid species. In vivo extraction of living biological organisms (e.g., zebrafishes), in situ sampling a precise position of small organisms (e.g., Daphnia magna), and even microscale analysis of single eukaryotic cells (e.g., HepG2) are easily achieved by the SPME probe. After extraction, the loaded SPME probe is directly applied for nanoESI-MS analysis, and a high-resolution mass spectrometer is employed for recording spectra and identifying lipid species. Compared with the conventional direct infusion shotgun MS lipidomics, our proposed methodology shows a similar result of lipid profiles but with simpler sample pretreatment, less sample consumption, and shorter analytical times. Lipidomics of zebrafish, Daphnia magna, and HepG2 cell populations were investigated by our proposed BSCP-nanoESI-MS methodology, and abundant lipid compositions were detected and identified and biomarkers were obtained via multivariate statistical analysis.


Subject(s)
Coated Materials, Biocompatible/chemistry , Lipids/analysis , Animals , Daphnia , Hep G2 Cells , Humans , Mass Spectrometry , Multivariate Analysis , Surface Properties , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...