Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Viruses ; 16(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38932137

ABSTRACT

Proteases represent common targets in combating infectious diseases, including COVID-19. The 3-chymotrypsin-like protease (3CLpro) is a validated molecular target for COVID-19, and it is key for developing potent and selective inhibitors for inhibiting viral replication of SARS-CoV-2. In this review, we discuss structural relationships and diverse subsites of 3CLpro, shedding light on the pivotal role of dimerization and active site architecture in substrate recognition and catalysis. Our analysis of bioinformatics and other published studies motivated us to investigate a novel catalytic mechanism for the SARS-CoV-2 polyprotein cleavage by 3CLpro, centering on the triad mechanism involving His41-Cys145-Asp187 and its indispensable role in viral replication. Our hypothesis is that Asp187 may participate in modulating the pKa of the His41, in which catalytic histidine may act as an acid and/or a base in the catalytic mechanism. Recognizing Asp187 as a crucial component in the catalytic process underscores its significance as a fundamental pharmacophoric element in drug design. Next, we provide an overview of both covalent and non-covalent inhibitors, elucidating advancements in drug development observed in preclinical and clinical trials. By highlighting various chemical classes and their pharmacokinetic profiles, our review aims to guide future research directions toward the development of highly selective inhibitors, underscore the significance of 3CLpro as a validated therapeutic target, and propel the progression of drug candidates through preclinical and clinical phases.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Coronavirus 3C Proteases , SARS-CoV-2 , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , SARS-CoV-2/enzymology , SARS-CoV-2/drug effects , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Catalytic Domain , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , COVID-19/virology , Clinical Trials as Topic , Virus Replication/drug effects , Drug Evaluation, Preclinical
2.
Biochemistry ; 63(9): 1178-1193, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38669355

ABSTRACT

Herein, we present a novel esterase enzyme, Ade1, isolated from a metagenomic library of Amazonian dark earths soils, demonstrating its broad substrate promiscuity by hydrolyzing ester bonds linked to aliphatic groups. The three-dimensional structure of the enzyme was solved in the presence and absence of substrate (tributyrin), revealing its classification within the α/ß-hydrolase superfamily. Despite being a monomeric enzyme, enzymatic assays reveal a cooperative behavior with a sigmoidal profile (initial velocities vs substrate concentrations). Our investigation brings to light the allokairy/hysteresis behavior of Ade1, as evidenced by a transient burst profile during the hydrolysis of substrates such as p-nitrophenyl butyrate and p-nitrophenyl octanoate. Crystal structures of Ade1, coupled with molecular dynamics simulations, unveil the existence of multiple conformational structures within a single molecular state (E̅1). Notably, substrate binding induces a loop closure that traps the substrate in the catalytic site. Upon product release, the cap domain opens simultaneously with structural changes, transitioning the enzyme to a new molecular state (E̅2). This study advances our understanding of hysteresis/allokairy mechanisms, a temporal regulation that appears more pervasive than previously acknowledged and extends its presence to metabolic enzymes. These findings also hold potential implications for addressing human diseases associated with metabolic dysregulation.


Subject(s)
Esterases , Molecular Dynamics Simulation , Esterases/chemistry , Esterases/metabolism , Esterases/genetics , Substrate Specificity , Catalytic Domain , Crystallography, X-Ray , Protein Conformation , Hydrolysis , Kinetics , Models, Molecular
3.
EMBO Rep ; 25(3): 1436-1452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38332152

ABSTRACT

Many bacteria kill rival species by translocating toxic effectors into target cells. Effectors are often encoded along with cognate immunity proteins that could (i) protect against "friendly-fire" (trans-intoxication) from neighboring sister cells and/or (ii) protect against internal cis-intoxication (suicide). Here, we distinguish between these two mechanisms in the case of the bactericidal Xanthomonas citri Type IV Secretion System (X-T4SS). We use a set of X. citri mutants lacking multiple effector/immunity protein (X-Tfe/X-Tfi) pairs to show that X-Tfis are not absolutely required to protect against trans-intoxication by wild-type cells. Our investigation then focused on the in vivo function of the lysozyme-like effector X-TfeXAC2609 and its cognate immunity protein X-TfiXAC2610. In the absence of X-TfiXAC2610, we observe X-TfeXAC2609-dependent and X-T4SS-independent accumulation of damage in the X. citri cell envelope, cell death, and inhibition of biofilm formation. While immunity proteins in other systems have been shown to protect against attacks by sister cells (trans-intoxication), this is an example of an antibacterial secretion system in which the immunity proteins are dedicated to protecting cells against cis-intoxication.


Subject(s)
Bacterial Proteins , Xanthomonas , Humans , Bacterial Proteins/metabolism , Xanthomonas/metabolism , Type IV Secretion Systems/metabolism , Anti-Bacterial Agents/metabolism
4.
J Comput Aided Mol Des ; 37(12): 585-606, 2023 12.
Article in English | MEDLINE | ID: mdl-37792106

ABSTRACT

Herein, we conducted simulations of trimeric Spike from several SARS-CoV-2 variants of concern (Delta and Omicron sub-variants BA.2, BA.5, and BQ.1) and investigated the mechanisms by which specific mutations confer resistance to neutralizing antibodies. We observed that the mutations primarily affect the cooperation between protein domains within and between protomers. The substitutions K417N and L452R expand hydrogen bonding interactions, reducing their interaction with neutralizing antibodies. By interacting with nearby residues, the K444T and N460K mutations in the SpikeBQ.1 variant potentially reduces solvent exposure, thereby promoting resistance to antibodies. We also examined the impact of D614G, P681R, and P681H substitutions on Spike protein structure that may be related to infectivity. The D614G substitution influences communication between a glycine residue and neighboring domains, affecting the transition between up- and -down RBD states. The P681R mutation, found in the Delta variant, enhances correlations between protein subunits, while the P681H mutation in Omicron sub-variants weakens long-range interactions that may be associated with reduced fusogenicity. Using a multiple linear regression model, we established a connection between inter-protomer communication and loss of sensitivity to neutralizing antibodies. Our findings underscore the importance of structural communication between protein domains and provide insights into potential mechanisms of immune evasion by SARS-CoV-2. Overall, this study deepens our understanding of how specific mutations impact SARS-CoV-2 infectivity and shed light on how the virus evades the immune system.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , Hydrogen Bonding , Linear Models , Mutation
5.
Commun Chem ; 6(1): 219, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37828292

ABSTRACT

Despite recent advances in cryo-electron microscopy and artificial intelligence-based model predictions, a significant fraction of structure determinations by macromolecular crystallography still requires experimental phasing, usually by means of single-wavelength anomalous diffraction (SAD) techniques. Most synchrotron beamlines provide highly brilliant beams of X-rays of between 0.7 and 2 Å wavelength. Use of longer wavelengths to access the absorption edges of biologically important lighter atoms such as calcium, potassium, chlorine, sulfur and phosphorus for native-SAD phasing is attractive but technically highly challenging. The long-wavelength beamline I23 at Diamond Light Source overcomes these limitations and extends the accessible wavelength range to λ = 5.9 Å. Here we report 22 macromolecular structures solved in this extended wavelength range, using anomalous scattering from a range of elements which demonstrate the routine feasibility of lighter atom phasing. We suggest that, in light of its advantages, long-wavelength crystallography is a compelling option for experimental phasing.

6.
Microorganisms ; 11(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37894080

ABSTRACT

SARS-CoV-2 diagnostic tests have become an important tool for pandemic control. Among the alternatives for COVID-19 diagnosis, antigen rapid diagnostic tests (Ag-RDT) are very convenient and widely used. However, as SARS-CoV-2 variants may continuously emerge, the replacement of tests and reagents may be required to maintain the sensitivity of Ag-RDTs. Here, we describe the development and validation of an Ag-RDT during an outbreak of the Omicron variant, including the characterization of a new monoclonal antibody (anti-DTC-N 1B3 mAb) that recognizes the Nucleocapsid protein (N). The anti-DTC-N 1B3 mAb recognized the sequence TFPPTEPKKDKKK located at the C-terminus of the N protein of main SARS-CoV-2 variants of concern. Accordingly, the Ag-RDT prototypes using the anti-DTC-N 1B3 mAB detected all the SARS-CoV-2 variants-Wuhan, Alpha, Gamma, Delta, P2 and Omicron. The performance of the best prototype (sensitivity of 95.2% for samples with Ct ≤ 25; specificity of 98.3% and overall accuracy of 85.0%) met the WHO recommendations. Moreover, results from a patients' follow-up study indicated that, if performed within the first three days after onset of symptoms, the Ag-RDT displayed 100% sensitivity. Thus, the new mAb and the Ag-RDT developed herein may constitute alternative tools for COVID-19 point-of-care diagnosis and epidemiological surveillance.

7.
J Immunol Methods ; 522: 113558, 2023 11.
Article in English | MEDLINE | ID: mdl-37704125

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is an enveloped, plus-stranded RNA virus responsible for the Coronavirus Disease 2019 (COVID-19). Patients infected with COVID-19 may be asymptomatic or have symptoms ranging from mild manifestations to severe cases of the disease that could lead to death. The SARS-CoV-2 genome encodes 4 structural proteins, including the Spike protein (S), the Nucleocapsid protein (N), Membrane protein (M) and, the Envelope protein (E). The N protein forms a major component of the ribonucleoprotein complex within the virus particle and play a vital role in its transcription and replication. Nevertheless, the S protein was the most important protein in the development of vaccines against COVID-19. However, the decrease in number of registered immunizations against the disease and the rapid drop in neutralizing antibody titers together with looser preventive measures for virus transmission, favored the rapid appearance of new variants of concerns (VOCs) that primarily show mutations in the S protein. This fact makes the N protein a good candidate for the development of diagnostic tests, due to its stability, amino acid conservation, high immunogenicity, and the smaller likelihood of mutation. With the aim of developing a new diagnostic kit based on the N protein, we evaluated the humoral response in female Wistar rats against this target. Three constructions of the N protein were used to inoculate the animals: the full-length protein (Cfull), the N- (NTD), and the C-terminal (CTD) portion of the protein. The immunizations induced the animal's immune response, with specific polyclonal IgG antibodies against the Cfull protein and its fragments. There were not non-specific bind to the protein used as negative control. Anti-Cfull antibodies demonstrated high efficiency in binding to the NTD protein and the antibodies present in the anti-CTD and anti-NTD sera have recognized the Cfull protein, but they were not able to recognize the NTD and CTD proteins, respectively. Our results indicate an efficient protocol for obtaining high antibody titers against the N recombinant protein of SARS-CoV-2 and its fragments highlighting the Cfull protein, which can be used in the development of new diagnostic kits.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Female , Animals , Rats , SARS-CoV-2/genetics , COVID-19/diagnosis , Antibodies, Viral , COVID-19 Vaccines , Rats, Wistar , Antibodies, Neutralizing , Nucleocapsid Proteins/genetics , Diagnostic Tests, Routine , COVID-19 Testing
8.
Sci Rep ; 13(1): 13985, 2023 08 26.
Article in English | MEDLINE | ID: mdl-37633958

ABSTRACT

CKD progression depends on the activation of an intricate set of hemodynamic and inflammatory mechanisms, promoting renal leukocyte infiltration, inflammation and fibrosis, leading to renal function loss. There are currently no specific drugs to detain renal fibrogenesis, which is a common end-point for different nephropathies. Clinical therapy for CKD is mostly based on the management of hypertension and proteinuria, partially achieved with renin-angiotensin-aldosterone system (RAAS) blockers, and the control of inflammation by immunosuppressive drugs. The aim of the present study was to verify if the administration of tamoxifen (TAM), an estrogen receptor modulator, clinically employed in the treatment of breast cancer and predicted to exert antifibrotic effects, would promote additional benefits when associated to a currently used therapeutic scheme for the conservative management of experimental CKD. Wistar rats underwent the NAME model of hypertensive nephrosclerosis, obtained by daily oral administration of a nitric oxide synthesis inhibitor, associated to dietary sodium overload. The therapeutic association of TAM to losartan (LOS), and mofetil mycophenolate (MMF) effectively reduced the severe hypertension, marked albuminuria and glomerular damage exhibited by NAME animals. Moreover, the association also succeeded in limiting renal inflammation in this model, and promoted further reduction of ECM interstitial accumulation and renal fibrosis, compared to the monotherapies. According to our results, the association of TAM to the currently used conservative treatment of CKD added significant antifibrotic effects both in vivo and in vitro, and may represent an alternative to slow the progression of chronic nephropathy.


Subject(s)
Hypertension , Nephrosclerosis , Renal Insufficiency, Chronic , Rats , Animals , Rats, Wistar , Nephrosclerosis/drug therapy , Nephrosclerosis/etiology , Conservative Treatment , Tamoxifen/pharmacology , Renal Insufficiency, Chronic/drug therapy , Inflammation
9.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37047078

ABSTRACT

Although the exact mechanism of the pathogenesis of coronavirus SARS-CoV-2 (COVID-19) is not fully understood, oxidative stress and the release of pro-inflammatory cytokines have been highlighted as playing a vital role in the pathogenesis of the disease. In this sense, alternative treatments are needed to reduce the level of inflammation caused by COVID-19. Therefore, this study aimed to investigate the potential effect of red photobiomodulation (PBM) as an attractive therapy to downregulate the cytokine storm caused by COVID-19 in a zebrafish model. RT-qPCR analyses and protein-protein interaction prediction among SARS-CoV-2 and Danio rerio proteins showed that recombinant Spike protein (rSpike) was responsible for generating systemic inflammatory processes with significantly increased levels of pro-inflammatory (il1b, il6, tnfa, and nfkbiab), oxidative stress (romo1) and energy metabolism (slc2a1a and coa1) mRNA markers, with a pattern similar to those observed in COVID-19 cases in humans. On the other hand, PBM treatment was able to decrease the mRNA levels of these pro-inflammatory and oxidative stress markers compared with rSpike in various tissues, promoting an anti-inflammatory response. Conversely, PBM promotes cellular and tissue repair of injured tissues and significantly increases the survival rate of rSpike-inoculated individuals. Additionally, metabolomics analysis showed that the most-impacted metabolic pathways between PBM and the rSpike treated groups were related to steroid metabolism, immune system, and lipid metabolism. Together, our findings suggest that the inflammatory process is an incisive feature of COVID-19 and red PBM can be used as a novel therapeutic agent for COVID-19 by regulating the inflammatory response. Nevertheless, the need for more clinical trials remains, and there is a significant gap to overcome before clinical trials can commence.


Subject(s)
COVID-19 , Animals , Humans , Zebrafish/metabolism , SARS-CoV-2/metabolism , Cytokine Release Syndrome , Cytokines/metabolism , RNA, Messenger , Membrane Proteins , Mitochondrial Proteins
10.
J Biomol Struct Dyn ; 41(19): 9326-9343, 2023 11.
Article in English | MEDLINE | ID: mdl-36345794

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron is currently the most prevalent SARS-CoV-2 variant worldwide. Herein, we calculated molecular dynamics simulations of the trimeric spikeWT and SpikeBA.1 for 300 ns. Our results show that SpikeBA.1 has more conformational flexibility than SpikeWT. Our principal component analysis (PCA) allowed us to observe a broader spectrum of different conformations for SpikeBA.1, mainly at N-terminal domain (NTD) and receptor-binding domain (RBD). Such increased flexibility could contribute to decreased neutralizing antibody recognition of this variant. Our molecular dynamics data show that the RBDBA.1 easily visits an up-conformational state and the prevalent D614G mutation is pivotal to explain molecular dynamics results for this variant because to lost hydrogen bonding interactions between the residue pairs K854SC/D614SC, Y837MC/D614MC, K835SC/D614SC, T859SC/D614SC. In addition, SpikeBA.1 residues near the furin cleavage site are more flexible than in SpikeWT, probably due to P681H and D614G substitutions. Finally, dynamical cross-correlation matrix (DCCM) analysis reveals that D614G and P681H may allosterically affect the cleavage site S1/S2. Conversely, S2' site may be influenced by residues located between NTD and RBD of a neighboring protomer of the SpikeWT. Such communication may be lost in SpikeBA.1, explaining the changes of the cell tropism in the viral infection. In addition, the movements of the NTDWT and NTDBA.1 may modulate the RBD conformation through allosteric effects. Taken together, our results explain how the structural aspects may explain the observed gains in infectivity, immune system evasion and transmissibility of the Omicron variant.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Molecular Dynamics Simulation , Immune System , Mutation
11.
ACS Omega ; 7(35): 30700-30709, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36068861

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is evolving with mutations in the spike protein, especially in the receptor-binding domain (RBD). The failure of public health measures in some countries to contain the spread of the disease has given rise to novel viral variants with increased transmissibility. However, key questions about how quickly the variants can spread remain unclear. Herein, we performed a structural investigation using molecular dynamics simulations and determined dissociation constant (K D) values using surface plasmon resonance assays of three fast-spreading SARS-CoV-2 variants, alpha, beta, and gamma, as well as genetic factors in host cells that may be related to the viral infection. Our results suggest that the SARS-CoV-2 variants facilitate their entry into the host cell by moderately increased binding affinities to the human ACE2 receptor, different torsions in hACE2 mediated by RBD variants, and an increased spike exposure time to proteolytic enzymes. We also found that other host cell aspects, such as gene and isoform expression of key genes for the infection (ACE2, FURIN, and TMPRSS2), may have few contributions to the SARS-CoV-2 variant infectivity. In summary, we concluded that a combination of viral and host cell factors allows SARS-CoV-2 variants to increase their abilities to spread faster than the wild type.

12.
Front Physiol ; 13: 867444, 2022.
Article in English | MEDLINE | ID: mdl-35721551

ABSTRACT

The ongoing COVID-19 pandemic represents an extra burden in the majority of public and private health systems worldwide beyond the most pessimistic expectations, driving an urgent rush to develop effective vaccines and effective medical treatments against the SARS-CoV-2 pandemic. The Nucleocapsid structural viral protein is remarkably immunogenic and hugely expressed during infection. High IgG antibodies against Nucleocapsid protein (N protein) levels were detected in the serum of COVID-19 patients, confirming its pivotal antigen role for a T lymphocyte response in a vaccine microenvironment. Currently, adverse events associated with immunizations have raised some degree of concern, irrespective of its huge benefits in dealing with disease severity and decreasing mortality and morbidity. This hitherto study evaluates histological changes in rats' testes, epididymis, prostate, and seminal vesicles and analyzes hormone levels after solely N protein inoculation. Therefore, we exposed a group of Lewis rats to weekly injections of the recombinant N protein for 28 days, while a control group was inoculated with a buffer solution. The N group revealed a more significant number of spermatozoa. Spermatozoa in the seminiferous tubules were counted in twenty 400 × microscopy fields (mean of 9.2 vs. 4.6 in the control group; p < 0,01), but significantly lower testosterone levels (mean of 125.70 ng/dl vs. 309,00 ng/dl in the control group; p < 0,05) were found. No other histological and biochemical changes were displayed. Conclusively, these data suggest testicular hormonal imbalance mediated by the SARS-CoV-2 N protein that could be linked to reported post-COVID-19 syndrome hypogonadism. More relevant research might be performed to confirm this viral antigen's deleterious mechanism in the human testicular microenvironment, particular in Leydig cell function.

13.
PLoS One ; 17(5): e0268434, 2022.
Article in English | MEDLINE | ID: mdl-35609032

ABSTRACT

The SARS-CoV-2 pandemic have been affecting millions of people worldwide, since the beginning of 2020. COVID-19 can cause a wide range of clinical symptoms, which varies from asymptomatic presentation to severe respiratory insufficiency, exacerbation of immune response, disseminated microthrombosis and multiple organ failure, which may lead to dead. Due to the rapid spread of SARS-CoV-2, the development of vaccines to minimize COVID-19 severity in the world population is imperious. One of the employed techniques to produce vaccines against emerging viruses is the synthesis of recombinant proteins, which can be used as immunizing agents. Based on the exposed, the aim of the present study was to verify the systemic and immunological effects of IM administration of recombinant Nucleocapsid protein (NP), derived from SARS-CoV-2 and produced by this research group, in 2 different strains of rats (Rattus norvegicus); Wistar and Lewis. For this purpose, experimental animals received 4 injections of NP, once a week, and were submitted to biochemical and histological analysis. Our results showed that NP inoculations were safe for the animals, which presented no clinical symptoms of worrying side effects, nor laboratorial alterations in the main biochemical and histological parameters, suggesting the absence of toxicity induced by NP. Moreover, NP injections successfully triggered the production of specific anti-SARS-CoV-2 IgG antibodies by both Wistar and Lewis rats, showing the sensitization to have been well sufficient for the immunization of these strains of rats. Additionally, we observed the local lung activation of the Bronchus-Associated Lymphoid Tissue (BALT) of rats in the NP groups, suggesting that NP elicits specific lung immune response. Although pre-clinical and clinical studies are still required, our data support the recombinant NP produced by this research group as a potential immunizing agent for massive vaccination, and may represent advantages upon other recombinant proteins, since it seems to induce specific pulmonary protection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity , Immunization , Lung , Nucleocapsid Proteins , Rats , Rats, Inbred Lew , Rats, Wistar , Recombinant Proteins , Spike Glycoprotein, Coronavirus , Vaccination
14.
Viruses ; 14(4)2022 04 16.
Article in English | MEDLINE | ID: mdl-35458557

ABSTRACT

Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) are constantly threatening global public health. With no end date, the pandemic persists with the emergence of novel variants that threaten the effectiveness of diagnostic tests and vaccines. Mutations in the Spike surface protein of the virus are regularly observed in the new variants, potentializing the emergence of novel viruses with different tropism from the current ones, which may change the severity and symptoms of the disease. Growing evidence has shown that mutations are being selected in favor of variants that are more capable of evading the action of neutralizing antibodies. In this context, the most important factor guiding the evolution of SARS-CoV-2 is its interaction with the host's immune system. Thus, as current vaccines cannot block the transmission of the virus, measures complementary to vaccination, such as the use of masks, hand hygiene, and keeping environments ventilated remain essential to delay the emergence of new variants. Importantly, in addition to the involvement of the immune system in the evolution of the virus, we highlight several chemical parameters that influence the molecular interactions between viruses and host cells during invasion and are also critical tools making novel variants more transmissible. In this review, we dissect the impacts of the Spike mutations on biological parameters such as (1) the increase in Spike binding affinity to hACE2; (2) bound time for the receptor to be cleaved by the proteases; (3) how mutations associate with the increase in RBD up-conformation state in the Spike ectodomain; (4) expansion of uncleaved Spike protein in the virion particles; (5) increment in Spike concentration per virion particles; and (6) evasion of the immune system. These factors play key roles in the fast spreading of SARS-CoV-2 variants of concern, including the Omicron.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , COVID-19/virology , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
15.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34983846

ABSTRACT

Many soil-, water-, and plant-associated bacterial species from the orders Xanthomonadales, Burkholderales, and Neisseriales carry a type IV secretion system (T4SS) specialized in translocating effector proteins into other gram-negative species, leading to target cell death. These effectors, known as X-Tfes, carry a carboxyl-terminal domain of ∼120 residues, termed XVIPCD, characterized by several conserved motifs and a glutamine-rich tail. Previous studies showed that the XVIPCD is required for interaction with the T4SS coupling protein VirD4 and for T4SS-dependent translocation. However, the structural basis of the XVIPCD-VirD4 interaction is unknown. Here, we show that the XVIPCD interacts with the central all-alpha domain of VirD4 (VirD4AAD). We used solution NMR spectroscopy to solve the structure of the XVIPCD of X-TfeXAC2609 from Xanthomonas citri and to map its interaction surface with VirD4AAD Isothermal titration calorimetry and in vivo Xanthomonas citri versus Escherichia coli competition assays using wild-type and mutant X-TfeXAC2609 and X-TfeXAC3634 indicate that XVIPCDs can be divided into two regions with distinct functions: the well-folded N-terminal region contains specific conserved motifs that are responsible for interactions with VirD4AAD, while both N- and carboxyl-terminal regions are required for effective X-Tfe translocation into the target cell. The conformational stability of the N-terminal region is reduced at and below pH 7.0, a property that may facilitate X-Tfe unfolding and translocation through the more acidic environment of the periplasm.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Escherichia coli/chemistry , Type IV Secretion Systems/antagonists & inhibitors , Type IV Secretion Systems/chemistry , Xanthomonas/chemistry , Bacterial Proteins/genetics , Escherichia coli/genetics , Models, Molecular , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Domains , Structure-Activity Relationship , Type IV Secretion Systems/genetics , Xanthomonas/genetics
16.
J Biomol Struct Dyn ; 40(21): 11339-11356, 2022.
Article in English | MEDLINE | ID: mdl-34370631

ABSTRACT

The current outbreak of COVID-19 is leading an unprecedented scientific effort focusing on targeting SARS-CoV-2 proteins critical for its viral replication. Herein, we performed high-throughput virtual screening of more than eleven thousand FDA-approved drugs using backpropagation-based artificial neural networks (q2LOO = 0.60, r2 = 0.80 and r2pred = 0.91), partial-least-square (PLS) regression (q2LOO = 0.83, r2 = 0.62 and r2pred = 0.70) and sequential minimal optimization (SMO) regression (q2LOO = 0.70, r2 = 0.80 and r2pred = 0.89). We simulated the stability of Acarbose-derived hexasaccharide, Naratriptan, Peramivir, Dihydrostreptomycin, Enviomycin, Rolitetracycline, Viomycin, Angiotensin II, Angiotensin 1-7, Angiotensinamide, Fenoterol, Zanamivir, Laninamivir and Laninamivir octanoate with 3CLpro by 100 ns and calculated binding free energy using molecular mechanics combined with Poisson-Boltzmann surface area (MM-PBSA). Our QSAR models and molecular dynamics data suggest that seven repurposed-drug candidates such as Acarbose-derived Hexasaccharide, Angiotensinamide, Dihydrostreptomycin, Enviomycin, Fenoterol, Naratriptan and Viomycin are potential SARS-CoV-2 main protease inhibitors. In addition, our QSAR models and molecular dynamics simulations revealed that His41, Asn142, Cys145, Glu166 and Gln189 are potential pharmacophoric centers for 3CLpro inhibitors. Glu166 is a potential pharmacophore for drug design and inhibitors that interact with this residue may be critical to avoid dimerization of 3CLpro. Our results will contribute to future investigations of novel chemical scaffolds and the discovery of novel hits in high-throughput screening as potential anti-SARS-CoV-2 properties.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiviral Agents , Drug Repositioning , Protease Inhibitors , SARS-CoV-2 , Acarbose , Angiotensin Amide , Dihydrostreptomycin Sulfate , Enviomycin , Fenoterol , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , Quantitative Structure-Activity Relationship , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology
17.
ACS Pharmacol Transl Sci ; 4(5): 1514-1527, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34651104

ABSTRACT

An unprecedented global health crisis has been caused by a new virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We performed experiments to test if a hypertonic saline solution was capable of inhibiting virus replication. Our data show that 1.2% NaCl inhibited virus replication by 90%, achieving 100% of inhibition at 1.5% in the nonhuman primate kidney cell line Vero, and 1.1% of NaCl was sufficient to inhibit the virus replication by 88% in human epithelial lung cell line Calu-3. Furthermore, our results indicate that the inhibition is due to an intracellular mechanism and not to the dissociation of the spike SARS-CoV-2 protein and its human receptor. NaCl depolarizes the plasma membrane causing a low energy state (high ADP/ATP concentration ratio) without impairing mitochondrial function, supposedly associated with the inhibition of the SARS-CoV-2 life cycle. Membrane depolarization and intracellular energy deprivation are possible mechanisms by which the hypertonic saline solution efficiently prevents virus replication in vitro assays.

18.
PLoS Pathog ; 17(8): e1009808, 2021 08.
Article in English | MEDLINE | ID: mdl-34398935

ABSTRACT

Type IV pili (T4P) are thin and flexible filaments found on the surface of a wide range of Gram-negative bacteria that undergo cycles of extension and retraction and participate in a variety of important functions related to lifestyle, defense and pathogenesis. During pilus extensions, the PilB ATPase energizes the polymerization of pilin monomers from the inner membrane. In Xanthomonas citri, two cytosolic proteins, PilZ and the c-di-GMP receptor FimX, are involved in the regulation of T4P biogenesis through interactions with PilB. In vivo fluorescence microscopy studies show that PilB, PilZ and FimX all colocalize to the leading poles of X. citri cells during twitching motility and that this colocalization is dependent on the presence of all three proteins. We demonstrate that full-length PilB, PilZ and FimX can interact to form a stable complex as can PilB N-terminal, PilZ and FimX C-terminal fragments. We present the crystal structures of two binary complexes: i) that of the PilB N-terminal domain, encompassing sub-domains ND0 and ND1, bound to PilZ and ii) PilZ bound to the FimX EAL domain within a larger fragment containing both GGDEF and EAL domains. Evaluation of PilZ interactions with PilB and the FimX EAL domain in these and previously published structures, in conjunction with mutagenesis studies and functional assays, allow us to propose an internally consistent model for the PilB-PilZ-FimX complex and its interactions with the PilM-PilN complex in the context of the inner membrane platform of the X. citri Type IV pilus.


Subject(s)
Adenosine Triphosphatases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Fimbriae, Bacterial/metabolism , Oxidoreductases/metabolism , Xanthomonas/metabolism , Crystallography, X-Ray , Oxidoreductases/chemistry , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Virulence , Xanthomonas/growth & development
19.
Comput Struct Biotechnol J ; 19: 279-302, 2021.
Article in English | MEDLINE | ID: mdl-33425257

ABSTRACT

Bacteria of the Xanthomonas genus are mainly phytopathogens of a large variety of crops of economic importance worldwide. Xanthomonas spp. rely on an arsenal of protein effectors, toxins and adhesins to adapt to the environment, compete with other microorganisms and colonize plant hosts, often causing disease. These protein effectors are mainly delivered to their targets by the action of bacterial secretion systems, dedicated multiprotein complexes that translocate proteins to the extracellular environment or directly into eukaryotic and prokaryotic cells. Type I to type VI secretion systems have been identified in Xanthomonas genomes. Recent studies have unravelled the diverse roles played by the distinct types of secretion systems in adaptation and virulence in xanthomonads, unveiling new aspects of their biology. In addition, genome sequence information from a wide range of Xanthomonas species and pathovars have become available recently, uncovering a heterogeneous distribution of the distinct families of secretion systems within the genus. In this review, we describe the architecture and mode of action of bacterial type I to type VI secretion systems and the distribution and functions associated with these important nanoweapons within the Xanthomonas genus.

20.
ACS Pharmacol Transl Sci, v. 5, n. 4, p. 1514–1527, set. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3992

ABSTRACT

An unprecedented global health crisis has been caused by a new virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We performed experiments to test if a hypertonic saline solution was capable of inhibiting virus replication. Our data show that 1.2% NaCl inhibited virus replication by 90%, achieving 100% of inhibition at 1.5% in the nonhuman primate kidney cell line Vero, and 1.1% of NaCl was sufficient to inhibit the virus replication by 88% in human epithelial lung cell line Calu-3. Furthermore, our results indicate that the inhibition is due to an intracellular mechanism and not to the dissociation of the spike SARS-CoV-2 protein and its human receptor. NaCl depolarizes the plasma membrane causing a low energy state (high ADP/ATP concentration ratio) without impairing mitochondrial function, supposedly associated with the inhibition of the SARS-CoV-2 life cycle. Membrane depolarization and intracellular energy deprivation are possible mechanisms by which the hypertonic saline solution efficiently prevents virus replication in vitro assays.

SELECTION OF CITATIONS
SEARCH DETAIL
...