Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Arch Esp Urol ; 77(2): 173-182, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38583010

ABSTRACT

BACKGROUND: In recent years, significant attention has been directed towards long non-coding RNA NUT family member 2A antisense RNA 1 (NUTM2A-AS1) for its oncogenic role in tumours. This study aimed to investigate the functional and molecular mechanisms underlying NUTM2A-AS1 in prostate cancer (PCa). METHODS: NUTM2A-AS1, miR-376a-3p, and protein arginine methyltransferase 5 (PRMT5) levels were assessed in PCa samples and matched non-cancerous prostate samples. The DU145 cell line was conditioned to undergo transfection with relevant plasmids, and a cell counting kit-8 assay was performed to evaluate cell proliferation. A Transwell assay was conducted to analyse cell migration or invasion. Cell apoptosis was assessed using an annexin V-fluorescein isothiocyanate/propidium iodide apoptosis detection kit and flow cytometry. A tumour sphere formation assay was conducted to assess the ability of PCa cells to form tumour spheres. RESULTS: We found elevated expression of NUTM2A-AS1 and PRMT5 and decreased expression of miR-376a-3p in PCa samples. Inhibition of NUTM2A-AS1 or overexpression of miR-376a-3p led to reduced cell proliferation and diminished cancer stem cell-like traits in vitro. NUTM2A-AS1 regulated miR-376a-3p through competitive absorption, thereby modulating PRMT5. Up-regulation of PRMT5 nullified the therapeutic effects of inhibiting NUTM2A-AS1 or overexpressing miR-376a-3p in DU145 cells. CONCLUSIONS: NUTM2A-AS1 promotes cancer stem cell-like traits in PCa cells by targeting PRMT5 through miR-376a-3p. Therefore, these NUTM2A-AS1-based novel insights into tumour therapy hold promise for patients with PCa.


Subject(s)
MicroRNAs , Prostatic Neoplasms , RNA, Long Noncoding , Male , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Prostate , Cell Line, Tumor , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
2.
Arch. esp. urol. (Ed. impr.) ; 77(2): 173-182, mar. 2024. ilus, graf, tab
Article in English | IBECS | ID: ibc-231939

ABSTRACT

Background: In recent years, significant attention has been directed towards long non-coding RNA NUT family member 2A antisense RNA 1 (NUTM2A-AS1) for its oncogenic role in tumours. This study aimed to investigate the functional and molecular mechanisms underlying NUTM2A-AS1 in prostate cancer (PCa). Methods: NUTM2A-AS1, miR-376a-3p, and protein arginine methyltransferase 5 (PRMT5) levels were assessed in PCa samples and matched non-cancerous prostate samples. The DU145 cell line was conditioned to undergo transfection with relevant plasmids, and a cell counting kit-8 assay was performed to evaluate cell proliferation. A Transwell assay was conducted to analyse cell migration or invasion. Cell apoptosis was assessed using an annexin V-fluorescein isothiocyanate/propidium iodide apoptosis detection kit and flow cytometry. A tumour sphere formation assay was conducted to assess the ability of PCa cells to form tumour spheres. Results: We found elevated expression of NUTM2A-AS1 and PRMT5 and decreased expression of miR-376a-3p in PCa samples. Inhibition of NUTM2A-AS1 or overexpression of miR-376a-3p led to reduced cell proliferation and diminished cancer stem cell-like traits in vitro. NUTM2A-AS1 regulated miR-376a-3p through competitive absorption, thereby modulating PRMT5. Up-regulation of PRMT5 nullified the therapeutic effects of inhibiting NUTM2A-AS1 or overexpressing miR-376a-3p in DU145 cells. Conclusions: NUTM2A-AS1 promotes cancer stem cell-like traits in PCa cells by targeting PRMT5 through miR-376a-3p. Therefore, these NUTM2A-AS1-based novel insights into tumour therapy hold promise for patients with PCa. (AU)


Subject(s)
Prostatic Neoplasms , RNA, Long Noncoding , MicroRNAs , Protein-Arginine N-Methyltransferases
SELECTION OF CITATIONS
SEARCH DETAIL
...