Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Article in English | WPRIM (Western Pacific) | ID: wpr-925077

ABSTRACT

The current COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has completely changed human life for more than two years. Upon the emergence of this new lethal virus, multiple approaches were utilized to gain basic knowledge about its biology. Moreover, modern technologies, such as the organoid model system and next-generation sequencing, enabled us to rapidly establish strategies to tackle the disease, including vaccines and therapeutics. The recently developed organoid technology reflects human physiology more closely than other model systems. Coupled with its rapidness, high efficiency, and outstanding reliability, it has provided an opportunity to develop new drugs and understand the impact of the viral pathogen on the host. Recent findings using organoids have successfully revealed the cellular tropism of the virus in different organs and identified potential drug candidates that impact the disease. This review will summarize current achievements made with organoids in the fight against COVID-19.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-441080

ABSTRACT

A new phase of the COVID-19 pandemic has started as several SARS-CoV-2 variants are rapidly emerging globally, raising concerns for increased transmissibility. As animal models and traditional in vitro systems may fail to model key aspects of the SARS-CoV-2 replication cycle, representative in vitro systems to assess variants phenotypically are urgently needed. We found that the British variant (clade B.1.1.7), compared to an ancestral SARS-CoV-2 clade B virus, produced higher levels of infectious virus late in infection and had a higher replicative fitness in human airway, alveolar and intestinal organoid models. Our findings unveil human organoids as powerful tools to phenotype viral variants and suggest extended shedding as a correlate of fitness for SARS-CoV-2. One-Sentence SummaryBritish SARS-CoV-2 variant (clade B.1.1.7) infects organoids for extended time and has a higher fitness in vitro.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-444952

ABSTRACT

Rapid identification of host genes essential for virus replication may expedite the generation of therapeutic interventions. Genetic screens are often performed in transformed cell lines that poorly represent viral target cells in vivo, leading to discoveries that may not be translated to the clinic. Intestinal organoids (IOs) are increasingly used to model human disease and are amenable to genetic engineering. To discern which host factors are reliable anti-coronavirus therapeutic targets, we generate mutant clonal IOs for 19 host genes previously implicated in coronavirus biology. We verify ACE2 and DPP4 as entry receptors for SARS-CoV/SARS-CoV-2 and MERS-CoV respectively. SARS-CoV-2 replication in IOs does not require the endosomal Cathepsin B/L proteases, but specifically depends on the cell surface protease TMPRSS2. Other TMPRSS family members were not essential. The newly emerging coronavirus variant B.1.1.7, as well as SARS-CoV and MERS-CoV similarly depended on TMPRSS2. These findings underscore the relevance of non-transformed human models for coronavirus research, identify TMPRSS2 as an attractive pan-coronavirus therapeutic target, and demonstrate that an organoid knockout biobank is a valuable tool to investigate the biology of current and future emerging coronaviruses.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-060350

ABSTRACT

COVID-19, caused by SARS-CoV-2, is an influenza-like disease with a respiratory route of transmission, yet clinical evidence suggests that the intestine may present another viral target organ. Indeed, the SARS-CoV-2 receptor angiotensin converting enzyme 2 (ACE2) is highly expressed on differentiated enterocytes. In human small intestinal organoids, enterocytes were readily infected by SARS-CoV and SARS-CoV-2 as demonstrated by confocal- and electron-microscopy. Consequently, significant titers of infectious viral particles were measured. mRNA expression analysis revealed strong induction of a generic viral response program. We conclude that intestinal epithelium supports SARS-CoV-2 replication. One Sentence SummarySARS-CoV-2 infection of enterocytes in human small intestinal organoids

SELECTION OF CITATIONS
SEARCH DETAIL
...