Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Phys ; 135(5): 054109, 2011 Aug 07.
Article in English | MEDLINE | ID: mdl-21823692

ABSTRACT

We study the behavior of different functionals of the one-body reduced density matrix (1RDM) for systems with fractional z-component of the total spin. We define these systems as ensembles of integer spin states. It is shown that, similarly to density functional theory, the error in the dissociation of diatomic molecules is directly related to the deviation from constancy of the atomic total energies as functions of the fractional spin. However, several functionals of the 1RDM show a size inconsistency which leads to additional errors. We also investigate the difference between a direct evaluation of the energy of an ensemble of integer-spin systems and a direct minimization of the energy of a fractional-spin system.


Subject(s)
Quantum Theory , Algorithms , Models, Chemical
2.
J Chem Phys ; 132(8): 084105, 2010 Feb 28.
Article in English | MEDLINE | ID: mdl-20192288

ABSTRACT

We report a size-inconsistency problem for several functionals within reduced density matrix functional theory. Being explicit functionals of the natural orbitals and occupation numbers, instead of the one-body reduced density matrix, many of the approximate functionals are not invariant under unitary transformations in the subspace of degenerate occupation numbers. One such transformation mixes the degenerate natural orbitals of identical independent subsystems, delocalizing them. Noninvariance under this transformation results in size inconsistency for some of the approximations while others avoid this pathology by favoring orbital localization.


Subject(s)
Quantum Theory , Algorithms , Helium/chemistry , Neon/chemistry
3.
J Chem Phys ; 131(22): 224105, 2009 Dec 14.
Article in English | MEDLINE | ID: mdl-20001022

ABSTRACT

The dissociation of molecules, even the most simple hydrogen molecule, cannot be described accurately within density functional theory because none of the currently available functionals accounts for strong on-site correlation. This problem led to a discussion of properties that the local Kohn-Sham potential has to satisfy in order to correctly describe strongly correlated systems. We derive an analytic expression for the nontrivial form of the Kohn-Sham potential in between the two fragments for the dissociation of a single bond. We show that the numerical calculations for a one-dimensional two-electron model system indeed approach and reach this limit. It is shown that the functional form of the potential is universal, i.e., independent of the details of the two fragments.


Subject(s)
Electrons , Quantum Theory , Algorithms , Hydrogen/chemistry , Lithium/chemistry
4.
J Chem Phys ; 130(6): 064109, 2009 Feb 14.
Article in English | MEDLINE | ID: mdl-19222269

ABSTRACT

An approximation for the exchange-correlation energy of reduced-density-matrix-functional theory was recently derived from a study of the homogeneous electron gas [N. N. Lathiotakis, N. Helbig, and E. K. U. Gross, Phys. Rev. B 75, 195120 (2007)]. In the present work, we show how this approximation can be extended appropriately to finite systems, where the Wigner Seitz radius r(s), the parameter characterizing the constant density of the electron gas, needs to be replaced. We apply the functional to a variety of molecules at their equilibrium geometry and also discuss its performance at the dissociation limit. We demonstrate that, although originally derived from the uniform gas, the approximation performs remarkably well for finite systems.

5.
Phys Rev Lett ; 98(19): 196405, 2007 May 11.
Article in English | MEDLINE | ID: mdl-17677641

ABSTRACT

A description of noncollinear magnetism in the framework of spin-density functional theory is presented for the exact exchange energy functional which depends explicitly on two-component spinor orbitals. The equations for the effective Kohn-Sham scalar potential and magnetic field are derived within the optimized effective potential (OEP) framework. With the example of a magnetically frustrated Cr monolayer it is shown that the resulting magnetization density exhibits much more noncollinear structure than standard calculations. Furthermore, a time-dependent generalization of the noncollinear OEP method is well suited for an ab initio description of spin dynamics. We also show that the magnetic moments of solids Fe, Co, and Ni are well reproduced.

SELECTION OF CITATIONS
SEARCH DETAIL