Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Nano ; 12(3): 2395-2402, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29370518

ABSTRACT

The reliability of lead-free Cu bonding technology is often limited by high bonding temperature and perpetual growth of intermetallic compounds between Sn solder and Cu substrate. Here, we report a low-bonding-temperature and highly reliable Cu bonding strategy with the use of graphene as an interlayer. By integrating a nanoscale graphene/Cu composite on the Cu substrate prior to thermocompression bonding, we observe a macroscale phenomenon where reliable Sn-Cu joints can be fabricated at a bonding temperature as low as 150 °C. During the bonding process, nanoscale features are replicated in the Sn solder by the Cu nanocone array morphology. Compared to microscale Sn, nanoscale Sn is mechanically weaker and thus can distribute on the Cu substrate at a much lower temperature. Furthermore, insertion of a graphene interlayer, which is one atom thick, can successfully retard the intermetallic compounds' growth and preserve a high bonding yield, following 96 h of aging, as confirmed through SEM and shear strength analyses. Our graphene-based Cu bonding strategy demonstrated in this work is highly reliable, cost-effective, and environmentally friendly, representing a much closer step toward industrial applications.

2.
Biosens Bioelectron ; 47: 396-401, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23612060

ABSTRACT

The functionalization of graphene nanosheets was realized using a simple starch mixture to achieve a highly selective recognition of iodide, thereby surmounting the complicated reactions possibly leading to low yield during functionalization. The groove recognition for starch to iodide, a novel recognition model, was established. The starch-to-graphene nanosheet mass ratio of 3:2 produced an optimal current signal. The recognition and measurement procedures were conducted in different cells, respectively. These procedures improved the selectivity and sensitivity, and overcame the possibility of interference from coexisting ions. Under optimal conditions, the graphene sheet-starch electrode was immersed in a recognition cell at pH 2.0 for 10min, afterward, in a measurement cell at pH 1.0 for quantitative analysis, resulting in the highest current signals obtained. The quantitative electrochemical measurements yielded a mean value of 214.6mg/kg in actual samples of commercially available seafood sample, whereas the spectrophotometric measurements produced a mean value of 226.7mg/kg. If the spectrophotometric value for the seafood sample is accurate, the percentage error for the electrochemical method is only 5.3%. Therefore, the electrochemical method is reliable for qualitative iodide measurements. The groove recognition was highlighted to elucidate the specific selectivity.


Subject(s)
Biosensing Techniques , Graphite/chemistry , Iodides/isolation & purification , Starch/chemistry , Electrochemical Techniques , Food Analysis , Humans , Seafood/analysis
SELECTION OF CITATIONS
SEARCH DETAIL