Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21266383

ABSTRACT

Returning universities to full on-campus operations while the COVID-19 pandemic is ongoing has been a controversial discussion in many countries. The risk of large outbreaks in dense course settings is contrasted by the benefits of in-person teaching. Transmission risk depends on a range of parameters, such as vaccination coverage, number of contacts and adoption of non-pharmaceutical intervention measures (NPIs). Due to the generalised academic freedom in Europe, many universities are asked to autonomously decide on and implement intervention measures and regulate on-campus operations. In the context of rapidly changing vaccination coverage and parameters of the virus, universities often lack the scientific facts to base these decisions on. To address this problem, we analyse a calibrated, data-driven simulation of transmission dynamics of 10755 students and 974 faculty in a medium-sized university. We use a co-location network reconstructed from student enrolment data and calibrate transmission risk based on outbreak size distributions in other Austrian education institutions. We focus on actionable interventions that are part of the already existing decision-making process of universities to provide guidance for concrete policy decisions. Here we show that with the vaccination coverage of about 80% recently reported for students in Austria, universities can be safely reopened if they either mandate masks or reduce lecture hall occupancy to 50%. Our results indicate that relaxing NPIs within an organisation based on the vaccination coverage of its sub-population can be a way towards limited normalcy, even if nation wide vaccination coverage is not sufficient to prevent large outbreaks yet.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21255320

ABSTRACT

How to safely maintain open schools during a pandemic is still controversial. We aim to identify those measures that effectively control the spread of SARS-CoV-2 in Austrian schools. By control we mean that each source case infects less than one other person on average. We use Austrian data on 616 clusters involving 2,822 student-cases and 676 teacher-cases to calibrate an agent-based epidemiological model in terms of cluster size and transmission risk depending on age and clinical presentation. Considering a situation in which the B1.617.2 (delta) virus strain is dominant and parts of the population are vaccinated, we quantify the impact of non-pharmaceutical intervention measures (NPIs) such as room ventilation, reduction of class size, wearing of masks during lessons, vaccinations, and school entry testing by SARS-CoV2-antigen tests. In the tracing data we find that 40% of all clusters involved no more than two cases, and 3% of the clusters only had more than 20 cases. The younger the students, the more likely we found asymptomatic cases and teachers as the source case of the in-school transmissions. Based on this data, the model shows that different school types require different combinations of NPIs to achieve control of the infection spreading: If 80% of teachers and 50% of students are vaccinated, in primary schools, it is necessary to combine at least two of the above NPIs. In secondary schools, where contact networks of students and teachers become increasingly large and dense, a combination of at least three NPIs is needed. A sensitivity analysis indicated that poorly executed mitigation measures might increase the cluster size by a factor of more than 17 for primary schools and even higher increases are to be expected for the other school types. Our results suggest that school-type-specific combinations of NPIs together with vaccinations are necessary to allow for a controlled opening of schools under sustained community transmission of the SARS-CoV-2 delta variant. However, large clusters might still occur on an infrequent, however, regular basis.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20090498

ABSTRACT

In response to the COVID-19 pandemic, governments have implemented a wide range of nonpharmaceutical interventions (NPIs). Monitoring and documenting government strategies during the COVID-19 crisis is crucial to understand the progression of the epidemic. Following a content analysis strategy of existing public information sources, we developed a specific hierarchical coding scheme for NPIs. We generated a comprehensive structured dataset of government interventions and their respective timelines of implementation. To improve transparency and motivate collaborative validation process, information sources are shared via an open library. We also provide codes that enable users to visualise the dataset. Standardization and structure of the dataset facilitate inter-country comparison and the assessment of the impacts of different NPI categories on the epidemic parameters, population health indicators, the economy, and human rights, among others. This dataset provides an in-depth insight of the government strategies and can be a valuable tool for developing relevant preparedness plans for pandemic. We intend to further develop and update this dataset on a weekly basis until the end of December 2020.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20115527

ABSTRACT

The goal of this analysis is to estimate the effects of the diverse government intervention measures implemented to mitigate the spread of the Covid-19 epidemic. We use a process model based on a compartmental epidemiological framework Susceptible-Infected-Recovered-Dead (SIRD). Analysis of case data with such a mechanism-based model has advantages over purely phenomenological approaches because the parameters of the SIRD model can be calibrated using prior knowledge. This approach can be used to investigate how governmental interventions have affected the Covid-19-related transmission and mortality rate during the epidemic.

SELECTION OF CITATIONS
SEARCH DETAIL
...