Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22272113

ABSTRACT

Between November 2021 and February 2022, SARS-CoV-2 Delta and Omicron variants co-circulated in the United States, allowing for co-infections and possible recombination events. We sequenced 29,719 positive samples during this period and analyzed the presence and fraction of reads supporting mutations specific to either the Delta or Omicron variant. We identified 18 co-infections, one of which displayed evidence of a low Delta-Omicron recombinant viral population. We also identified two independent cases of infection by a Delta-Omicron recombinant virus, where 100% of the viral RNA came from one clonal recombinant. In the three cases, the 5-end of the viral genome was from the Delta genome, and the 3-end from Omicron including the majority of the spike protein gene, though the breakpoints were different. Delta-Omicron recombinant viruses were rare, and there is currently no evidence that Delta-Omicron recombinant viruses are more transmissible between hosts compared to the circulating Omicron lineages.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22269672

ABSTRACT

The ongoing COVID-19 pandemic necessitates cost-effective, high-throughput, and timely genomic sequencing of SARS-CoV-2 viruses for outbreak investigations, identifying variants of concern (VoC), characterizing vaccine breakthrough infections, and public health surveillance. Additionally, the enormous demand of genomic sequencing on supply chains and the resulting shortages of laboratory supplies necessitate the use of low-reagent and low-consumable methods. Here, we report an optimized library preparation method where the same protocol can be used in a STAT scenario, from sample to sequencer in as little as eight hours, and a high-throughput scenario, where one technologist can perform 576 library preparations over the course of one 8-hour shift. This new method uses Freed et al.s 1200 bp primer sets (Biol Methods Protoc 5:bpaa014, 2020, https://doi.org/10.1093/biomethods/bpaa014) and a modified and truncated Illumina DNA Prep workflow (Illumina, CA, USA). Compared to the original, application of this new method in hundreds of clinical specimens demonstrated equivalent results to the full-length DNA Prep workflow at 45% the cost, 15% of consumables required (such as pipet tips), 25% of manual hands-on time, and 15% of on-instrument time if performing on a liquid handler, with no compromise in sequence quality. Results suggest that this new method is a rapid, simple, cost-effective, and high-quality SARS-CoV-2 whole genome sequencing protocol.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21259195

ABSTRACT

This study reports on the displacement of Alpha (B.1.1.7) by Delta (B.1.617.2 and its substrains AY.1, AY.2, and AY.3) in the United States. By analyzing RT-qPCR testing results and viral sequencing results of samples collected across the United States, we show that the percentage of SARS-CoV-2 positive cases caused by Alpha dropped from 67% in May 2021 to less than 3.0% in just 10 weeks. We also show that the Delta variant has outcompeted the Iota (B.1.526) variant of interest and Gamma (P.1) variant of concern. An analysis of the mean quantification cycles (Cq) values in positive tests over time also reveal that Delta infections lead to a higher viral load on average compared to Alpha infections, but this increase is only 2 to 3x on average for our study design. Our results are consistent with the hypothesis that the Delta variant is more transmissible than the Alpha variant, and that this could be due to the Delta variants ability to establish a higher viral load earlier in the infection compared to the Alpha variant.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21258181

ABSTRACT

Mutations in emerging SARS-CoV-2 lineages can interfere with the laboratory methods used to generate high-quality genome sequences for COVID-19 surveillance. Here, we identify 46 mutations in current variant of concern lineages affecting the widely used laboratory protocols for SARS-CoV-2 genomic sequencing by Freed et al. and the ARTIC network. We provide laboratory data showing how three of these mutations disrupted sequencing of P.1 lineage specimens during a recent outbreak in British Columbia, Canada, and we also demonstrate how we modified the Freed et al. protocol to restore performance.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21251364

ABSTRACT

The COVID-19 pandemic has highlighted the need for generic reagents and flexible systems in diagnostic testing. Magnetic bead-based nucleic acid extraction protocols using 96-well plates on open liquid handlers are readily amenable to meet this need. Here, one such approach is rigorously optimized to minimize cross-well contamination while maintaining sensitivity. Article SummaryA scalable, non-proprietary, magnetic bead-based automated nucleic acid extraction protocol optimised for minimum cross-well contamination

6.
Preprint in English | medRxiv | ID: ppmedrxiv-21251159

ABSTRACT

As of January of 2021, the highly transmissible B.1.1.7 variant of SARS-CoV-2, which was first identified in the United Kingdom (U.K.), has gained a strong foothold across the world. Because of the sudden and rapid rise of B.1.1.7, we investigated the prevalence and growth dynamics of this variant in the United States (U.S.), tracking it back to its early emergence and onward local transmission. We found that the RT-qPCR testing anomaly of S gene target failure (SGTF), first observed in the U.K., was a reliable proxy for B.1.1.7 detection. We sequenced 212 B.1.1.7 SARS-CoV-2 genomes collected from testing facilities in the U.S. from December 2020 to January 2021. We found that while the fraction of B.1.1.7 among SGTF samples varied by state, detection of the variant increased at a logistic rate similar to those observed elsewhere, with a doubling rate of a little over a week and an increased transmission rate of 35-45%. By performing time-aware Bayesian phylodynamic analyses, we revealed several independent introductions of B.1.1.7 into the U.S. as early as late November 2020, with onward community transmission enabling the variant to spread to at least 30 states as of January 2021. Our study shows that the U.S. is on a similar trajectory as other countries where B.1.1.7 rapidly became the dominant SARS-CoV-2 variant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality.

SELECTION OF CITATIONS
SEARCH DETAIL
...