Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Neuroimage ; 113: 298-309, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25842291

ABSTRACT

There is strong evidence demonstrating age-related differences in the acceptability of foods and beverages. To examine the neural foundations underlying these age-related differences in the acceptability of different flavors and foods, we performed an fMRI study to investigate brain and hedonic responses to orange juice, orange soda, and vegetable juice in three different age groups: Young (22), Middle (40) and Elderly (60 years). Orange juice and orange soda were found to be liked by all age groups, while vegetable juice was disliked by the Young, but liked by the Elderly. In the insular primary taste cortex, the activations to these stimuli were similar in the 3 age groups, indicating that the differences in liking for these stimuli between the 3 groups were not represented in this first stage of cortical taste processing. In the agranular insula (anterior to the insular primary taste cortex) where flavor is represented, the activations to the stimuli were similar in the Elderly, but in the Young the activations were larger to the vegetable juice than to the orange drinks; and the activations here were correlated with the unpleasantness of the stimuli. In the anterior midcingulate cortex, investigated as a site where the activations were correlated with the unpleasantness of the stimuli, there was again a greater activation to the vegetable than to the orange stimuli in the Young but not in the Elderly. In the amygdala (and orbitofrontal cortex), investigated as sites where the activations were correlated with the pleasantness of the stimuli, there was a smaller activation to the vegetable than to the orange stimuli in the Young but not in the Elderly. The Middle group was intermediate with respect to the separation of their activations to the stimuli in the brain areas that represent the pleasantness or unpleasantness of flavors. Thus age differences in the activations to different flavors can in some brain areas be related to, and probably cause, the differences in pleasantness of foods as they differ for people of different ages. This novel work provides a foundation for understanding the underlying neural bases for differences in food acceptability between age groups.


Subject(s)
Aging/psychology , Brain/physiology , Food Preferences/physiology , Taste/physiology , Adolescent , Adult , Aged , Amygdala/physiology , Beverages , Citrus sinensis , Female , Gyrus Cinguli/physiology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Smell/physiology , Somatosensory Cortex/physiology , Vegetables , Young Adult
2.
Am J Clin Nutr ; 100(5): 1378-84, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25332336

ABSTRACT

BACKGROUND: We assessed the bioavailability of orange juice (poly)phenols by monitoring urinary flavanone metabolites and ring fission catabolites produced by the action of the colonic microbiota. OBJECTIVE: Our objective was to identify and quantify metabolites and catabolites excreted in urine 0-24 h after the acute ingestion of a (poly)phenol-rich orange juice by 12 volunteers. DESIGN: Twelve volunteers [6 men and 6 women; body mass index (in kg/m(2)): 23.9-37.2] consumed a low (poly)phenol diet for 2 d before first drinking 250 mL pulp-enriched orange juice, which contained 584 µmol (poly)phenols of which 537 µmol were flavanones, and after a 2-wk washout, the procedure was repeated, and a placebo drink was consumed. Urine collected for a 24-h period was analyzed qualitatively and quantitatively by using high-performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS). RESULTS: A total of 14 metabolites were identified and quantified in urine by using HPLC-MS after orange juice intake. Hesperetin-O-glucuronides, naringenin-O-glucuronides, and hesperetin-3'-O-sulfate were the main metabolites. The overall urinary excretion of flavanone metabolites corresponded to 16% of the intake of 584 µmol (poly)phenols. The GC-MS analysis revealed that 8 urinary catabolites were also excreted in significantly higher quantities after orange juice consumption. These catabolites were 3-(3'-methoxy-4'-hydroxyphenyl)propionic acid, 3-(3'-hydroxy-4'-methoxyphenyl)propionic acid, 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid, 3-(3'-hydroxyphenyl)hydracrylic acid, 3'-methoxy-4'-hydroxyphenylacetic acid, hippuric acid, 3'-hydroxyhippuric acid, and 4'-hydroxyhippuric acid. These aromatic acids originated from the colonic microbiota-mediated breakdown of orange juice (poly)phenols and were excreted in amounts equivalent to 88% of (poly)phenol intake. When combined with the 16% excretion of metabolites, this percentage raised the overall urinary excretion to ∼ 100% of intake. CONCLUSIONS: When colon-derived phenolic catabolites are included with flavanone glucuronide and sulfate metabolites, orange juice (poly)phenols are much-more bioavailable than previously envisaged. In vitro and ex vivo studies on mechanisms underlying the potential protective effects of orange juice consumption should use in vivo metabolites and catabolites detected in this investigation at physiologic concentrations. The trial was registered at BioMed Central Ltd (www.controlledtrials.com) as ISRCTN04271658.


Subject(s)
Beverages/analysis , Citrus sinensis/chemistry , Polyphenols/pharmacokinetics , Adult , Biological Availability , Body Mass Index , Chromatography, High Pressure Liquid , Colon/drug effects , Colon/metabolism , Cross-Over Studies , Female , Flavanones/pharmacokinetics , Flavanones/urine , Fruit/chemistry , Gas Chromatography-Mass Spectrometry , Glucuronides/pharmacokinetics , Glucuronides/urine , Healthy Volunteers , Hesperidin/analogs & derivatives , Hesperidin/pharmacokinetics , Hesperidin/urine , Humans , Limit of Detection , Linear Models , Male , Middle Aged , Polyphenols/urine , Retrospective Studies , Young Adult
3.
Biotechnol Bioeng ; 77(6): 717-22, 2002 Mar 20.
Article in English | MEDLINE | ID: mdl-11807767

ABSTRACT

A novel and efficient method for the production of enantiomericaly pure R-3-hydroxyalkanoic acids and R-3-hydroxyalkanoic acid methylesters was developed. The described method is based on hydrolysis of poly(hydroxyalkanoate) copolymers synthesized by Pseudomonas putida. The polymer was isolated via solvent recovery and hydrolyzed by acid methanolysis. The obtained 3-hydroxyalkanoic acid methylester mixture was distilled into several fractions with an overall yield of 96.6% (w/w). Gas chromatography-mass spectrometry analysis of the fractions showed that 3-hydroxyhexanoic-, 3-hydroxyoctanoic-, 3 hydroxydecanoic-, and 3-hydroxydodecanoic acid methylesters were enriched to purities exceeding 96 mol%, with distillation yields of 99.9, 99.8, 88.4, and 56.8% (w/w), respectively. Subsequent saponification of the purified methylester fractions yielded the corresponding 3-hydroxyalkanoic acids, which were recovered up to 92.8% (w/w). Chiral gas chromatography analysis confirmed that both 3-hydroxyoctanoic acid and 3-hydroxyoctanoic acid methylester are present in the R-form at a very high enantiomeric excess (>99.9%).


Subject(s)
Hydroxy Acids/isolation & purification , Polyesters/isolation & purification , Pseudomonas putida/chemistry , Pseudomonas putida/metabolism , Fermentation , Hydrolysis
SELECTION OF CITATIONS
SEARCH DETAIL