Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3302, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658535

ABSTRACT

Uncontrolled secretion of ECM proteins, such as collagen, can lead to excessive scarring and fibrosis and compromise tissue function. Despite the widespread occurrence of fibrotic diseases and scarring, effective therapies are lacking. A promising approach would be to limit the amount of collagen released from hyperactive fibroblasts. We have designed membrane permeant peptide inhibitors that specifically target the primary interface between TANGO1 and cTAGE5, an interaction that is required for collagen export from endoplasmic reticulum exit sites (ERES). Application of the peptide inhibitors leads to reduced TANGO1 and cTAGE5 protein levels and a corresponding inhibition in the secretion of several ECM components, including collagens. Peptide inhibitor treatment in zebrafish results in altered tissue architecture and reduced granulation tissue formation during cutaneous wound healing. The inhibitors reduce secretion of several ECM proteins, including collagens, fibrillin and fibronectin in human dermal fibroblasts and in cells obtained from patients with a generalized fibrotic disease (scleroderma). Taken together, targeted interference of the TANGO1-cTAGE5 binding interface could enable therapeutic modulation of ERES function in ECM hypersecretion, during wound healing and fibrotic processes.


Subject(s)
Cicatrix , Collagen , Fibroblasts , Wound Healing , Zebrafish , Humans , Animals , Fibroblasts/metabolism , Fibroblasts/drug effects , Collagen/metabolism , Wound Healing/drug effects , Cicatrix/metabolism , Cicatrix/pathology , Cicatrix/drug therapy , Skin/metabolism , Skin/pathology , Skin/drug effects , Fibrosis , Peptides/pharmacology , Peptides/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects
2.
Nat Commun ; 12(1): 4900, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34385433

ABSTRACT

Skeletal muscle subsarcolemmal mitochondria (SSM) and intermyofibrillar mitochondria subpopulations have distinct metabolic activity and sensitivity, though the mechanisms that localize SSM to peripheral areas of muscle fibers are poorly understood. A protein interaction study and complexome profiling identifies PERM1 interacts with the MICOS-MIB complex. Ablation of Perm1 in mice reduces muscle force, decreases mitochondrial membrane potential and complex I activity, and reduces the numbers of SSM in skeletal muscle. We demonstrate PERM1 interacts with the intracellular adaptor protein ankyrin B (ANKB) that connects the cytoskeleton to the plasma membrane. Moreover, we identify a C-terminal transmembrane helix that anchors PERM1 into the outer mitochondrial membrane. We conclude PERM1 functions in the MICOS-MIB complex and acts as an adapter to connect the mitochondria with the sarcolemma via ANKB.


Subject(s)
Ankyrins/metabolism , Mitochondria, Muscle/metabolism , Multiprotein Complexes/metabolism , Muscle Proteins/metabolism , Sarcolemma/metabolism , Animals , Cell Membrane/metabolism , Cytoskeleton/metabolism , Membrane Potential, Mitochondrial/genetics , Membrane Potential, Mitochondrial/physiology , Mice, Knockout , Mitochondrial Proteins/metabolism , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology
3.
Biochem Pharmacol ; 186: 114484, 2021 04.
Article in English | MEDLINE | ID: mdl-33617845

ABSTRACT

Many drugs are largely hydrophobic molecules; a transporter might conceivably insert these into the plasma membrane. At least 18 transporters from diverse families have been reported to transport the model compound estrone sulfate alias estrone-3-sulfate (E3S). Out of these, we recently examined SLC22A11 (OAT4). We concluded from a comparison of E3S and uric acid transport that SLC22A11 does not translocate E3S into the cytosol, but into the plasma membrane. Here we present a hyperosmolarity alias hypertonicity assay to differentiate transport mechanisms. Human transporters were expressed heterologously in 293 cells. Solute uptake into intact cells was measured by LC-MS. Addition of mannitol or sucrose led to rapid cell shrinkage, but cell viability after 60 min in hyperosmolar buffer was not impaired. A decrease in substrate accumulation with increasing osmolarity as observed here for several substrates and the transporters SLC22A11, ETT (SLC22A4), OCT2 (SLC22A2), OAT3 (SLC22A8), and MATE1 (SLC47A1) suggests regular substrate translocation into the cytosol. An increase as observed for E3S transport by SLC22A11, OAT3, MATE1, SLC22A9, and SLC10A6 implies insertion into the membrane. In marked contrast to the other E3S transporters, the bile acid transporter SLC10A1 (NTCP, Na+ taurocholate co-transporting polypeptide) showed a decrease in the accumulation of E3S in hyperosmolar buffer; the same was observed with taurocholic acid. Indeed, our data from several functional assays strongly suggest that the transport mechanism is identical for both substrates. Apparently, a unique transport mechanism has been established for SLC10A1 by evolution that ensures the transport of amphipathic, detergent-like molecules into the cytosol.


Subject(s)
Cell Membrane/metabolism , Estrone/analogs & derivatives , Mannitol/administration & dosage , Organic Anion Transporters, Sodium-Dependent/metabolism , Sucrose/administration & dosage , Symporters/metabolism , Cell Membrane/drug effects , Diuretics, Osmotic/administration & dosage , Dose-Response Relationship, Drug , Estrone/metabolism , Estrone/pharmacology , HEK293 Cells , Humans , Osmolar Concentration , Sweetening Agents/administration & dosage
4.
J Mol Cell Cardiol ; 154: 41-59, 2021 05.
Article in English | MEDLINE | ID: mdl-33549681

ABSTRACT

Heart development relies on PTMs that control cardiomyocyte proliferation, differentiation and cardiac morphogenesis. We generated a map of phosphorylation sites during the early stages of cardiac postnatal development in mice; we quantified over 10,000 phosphorylation sites and 5000 proteins that were assigned to different pathways. Analysis of mitochondrial proteins led to the identification of PGC-1- and ERR-induced regulator in muscle 1 (PERM1), which is specifically expressed in skeletal muscle and heart tissue and associates with the outer mitochondrial membrane. We demonstrate PERM1 is subject to rapid changes mediated by the UPS through phosphorylation of its PEST motif by casein kinase 2. Ablation of Perm1 in mice results in reduced protein expression of lipin-1 accompanied by accumulation of specific phospholipid species. Isolation of Perm1-deficient mitochondria revealed significant downregulation of mitochondrial transport proteins for amino acids and carnitines, including SLC25A12/13/29/34 and CPT2. Consistently, we observed altered levels of various lipid species, amino acids, and acylcarnitines in Perm1-/- mitochondria. We conclude that the outer mitochondrial membrane protein PERM1 regulates homeostasis of lipid and amino acid metabolites in mitochondria.


Subject(s)
Membrane Proteins/metabolism , Mitochondrial Membranes/metabolism , Muscle Proteins/metabolism , Myocardium/metabolism , Phosphoproteins/metabolism , Proteomics , Animals , Heart/embryology , Lipid Metabolism , Mice , Mice, Knockout , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Muscle Proteins/genetics , Organogenesis/genetics , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...