Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22282552

ABSTRACT

BackgroundWe investigate the effects of remdesivir (RDV) treatment on intra-host SARS-CoV-2 diversity and low-frequency mutations in moderately ill hospitalized COVID-19 patients and compare them to patients without RDV treatment. MethodsSequential collections of nasopharyngeal and mid-turbinate swabs were obtained from 16 patients with and 31 patients without RDV treatment. A total of 113 samples were sequenced and mutation analyses were performed. ResultsWe did not identify any drug resistant mutations during RDV therapy. In genes encoding and associated with the replication complex, low-frequency minority variants that do not reach fixation within the sampling period were detected in 6/16 (37.5%) and 14/31 (45%) patients with and without RDV treatment respectively. We did not detect significant differences in within-host diversity and positive selection between the RDV-treated and untreated groups. ConclusionsMinimal intra-host variability and stochastic low-frequency variants detected in moderately ill patients suggests little selective pressure in patients receiving short courses of RDV. Patients undergoing short regimens of RDV therapy should continue to be monitored.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-481551

ABSTRACT

Wildlife reservoirs of SARS-CoV-2 may enable viral adaptation and spillback from animals to humans. In North America, there is evidence of unsustained spillover of SARS-CoV-2 from humans to white-tailed deer (Odocoileus virginianus), but no evidence of transmission from deer to humans. Through a biosurveillance program in Ontario, Canada we identified a new and highly divergent lineage of SARS-CoV-2 in white-tailed deer. This lineage is the most divergent SARS-CoV-2 lineage identified to date, with 76 consensus mutations (including 37 previously associated with non-human animal hosts) and signatures of considerable evolution and transmission within wildlife. Phylogenetic analysis also revealed an epidemiologically linked human case. Together, our findings represent the first clear evidence of sustained evolution of SARS-CoV-2 in white-tailed deer and of deer-to-human transmission.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-476458

ABSTRACT

White-tailed deer are susceptible to SARS-CoV-2 and represent a relevant species for surveillance. We investigated SARS-CoV-2 infection in white-tailed deer in Quebec, Canada. In November 2021, 251 nasal swabs and 104 retropharyngeal lymph nodes from 258 deer were analyzed for SARS-CoV-2 RNA, whole genome sequencing and virus isolation and 251 thoracic cavity fluid samples were tested for neutralizing antibodies. We detected SARS-CoV-2 RNA in three nasal swabs from the Estrie region and virus was isolated from two samples; evidence of past exposure was detected among deer from the same region. Viral sequences were assigned to lineage AY.44, a sublineage of B.1.617.2. All deer sequences clustered with human GISAID sequences collected in October 2021 from Vermont USA, which borders the Estrie region. Mutations in the S-gene and a deletion in ORF8 encoding a truncated protein were detected. These findings underscore the importance of ongoing surveillance of key wildlife species for SARS-CoV-2.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-470924

ABSTRACT

BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the COVID-19 pandemic, is capable of infecting a variety of wildlife species. Wildlife living in close contact with humans are at an increased risk of SARS-CoV-2 exposure and if infected have the potential to become a reservoir for the pathogen, making control and management more difficult. ObjectiveTo conduct SARS-CoV-2 surveillance in urban wildlife from Ontario and Quebec, Canada, increasing our knowledge of the epidemiology of the virus and our chances of detecting spillover from humans into wildlife. MethodsUsing a One Health approach, we leveraged activities of existing research, surveillance, and rehabilitation programs among multiple agencies to collect samples from 776 animals from 17 different wildlife species between June 2020 and May 2021. Samples from all animals were tested for the presence of SARS-CoV-2 viral RNA, and a subset of samples from 219 animals across 3 species (raccoons, Procyon lotor; striped skunks, Mephitis mephitis; and mink, Neovison vison) were also tested for the presence of neutralizing antibodies. ResultsNo evidence of SARS-CoV-2 viral RNA or neutralizing antibodies was detected in any of the tested samples. ConclusionAlthough we were unable to identify positive SARS-CoV-2 cases in wildlife, continued research and surveillance activities are critical to better understand the rapidly changing landscape of susceptible animal species. Collaboration between academic, public and animal health sectors should include experts from relevant fields to build coordinated surveillance and response capacity.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21257122

ABSTRACT

BackgroundThe aim of this prospective cohort study was to determine the burden of SARS-CoV-2 in air and on surfaces in rooms of patients hospitalized with COVID-19, and to identify patient characteristics associated with SARS-CoV-2 environmental contamination. MethodsNasopharyngeal swabs, surface, and air samples were collected from the rooms of 78 inpatients with COVID-19 at six acute care hospitals in Toronto from March to May 2020. Samples were tested for SARS-CoV-2 viral RNA and cultured to determine potential infectivity. Whole viral genomes were sequenced from nasopharyngeal and surface samples. Association between patient factors and detection of SARS-CoV-2 RNA in surface samples were investigated using a mixed-effects logistic regression model. FindingsSARS-CoV-2 RNA was detected from surfaces (125/474 samples; 42/78 patients) and air (3/146 samples; 3/45 patients) in COVID-19 patient rooms; 17% (6/36) of surface samples from three patients yielded viable virus. Viral sequences from nasopharyngeal and surface samples clustered by patient. Multivariable analysis indicated hypoxia at admission, a PCR-positive nasopharyngeal swab with a cycle threshold of [≤]30 on or after surface sampling date, higher Charlson co-morbidity score, and shorter time from onset of illness to sample date were significantly associated with detection of SARS-CoV-2 RNA in surface samples. InterpretationThe infrequent recovery of infectious SARS-CoV-2 virus from the environment suggests that the risk to healthcare workers from air and near-patient surfaces in acute care hospital wards is likely limited. Surface contamination was greater when patients were earlier in their course of illness and in those with hypoxia, multiple co-morbidities, and higher SARS-CoV-2 RNA concentration in NP swabs. Our results suggest that air and surfaces may pose limited risk a few days after admission to acute care hospitals.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-443286

ABSTRACT

Safe and effective vaccines are needed to end the COVID-19 pandemic caused by SARS-CoV-2. Here we report the preclinical development of a lipid nanoparticle (LNP) formulated SARS-CoV-2 mRNA vaccine, PTX-COVID19-B. PTX-COVID19-B was chosen among three candidates after the initial mouse vaccination results showed that it elicited the strongest neutralizing antibody response against SARS-CoV-2. Further tests in mice and hamsters indicated that PTX-COVID19-B induced robust humoral and cellular immune responses and completely protected the vaccinated animals from SARS-CoV-2 infection in the lung. Studies in hamsters also showed that PTX-COVID19-B protected the upper respiratory tract from SARS-CoV-2 infection. Mouse immune sera elicited by PTX-COVID19-B vaccination were able to neutralize SARS-CoV-2 variants of concern (VOCs), including the B.1.1.7, B.1.351 and P.1 lineages. No adverse effects were induced by PTX-COVID19-B in both mice and hamsters. These preclinical results indicate that PTX-COVID19-B is safe and effective. Based on these results, PTX-COVID19-B was authorized by Health Canada to enter clinical trials in December 2020 with a phase 1 clinical trial ongoing (ClinicalTrials.gov number: NCT04765436). One Sentence SummaryPTX-COVID19-B is a SARS-CoV-2 mRNA vaccine that is highly immunogenic, safe, and effective in preventing SARS-CoV-2 infection in mice and hamsters and is currently being evaluated in human clinical trials.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-158154

ABSTRACT

Type I interferons (IFNs) are our first line of defence against a virus. Protein over-expression studies have suggested the ability of SARS-CoV-2 proteins to block IFN responses. Emerging data also suggest that timing and extent of IFN production is associated with manifestation of COVID-19 severity. In spite of progress in understanding how SARS-CoV-2 activates antiviral responses, mechanistic studies into wildtype SARS-CoV-2-mediated induction and inhibition of human type I IFN responses are lacking. Here we demonstrate that SARS-CoV-2 infection induces a mild type I IFN response in vitro and in moderate cases of COVID-19. In vitro stimulation of type I IFN expression and signaling in human airway epithelial cells is associated with activation of canonical transcriptions factors, and SARS-CoV-2 is unable to inhibit exogenous induction of these responses. Our data demonstrate that SARS-CoV-2 is not adept in blocking type I IFN responses and provide support for ongoing IFN clinical trials. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=200 SRC="FIGDIR/small/158154v2_ufig1.gif" ALT="Figure 1"> View larger version (35K): org.highwire.dtl.DTLVardef@193c540org.highwire.dtl.DTLVardef@7b106forg.highwire.dtl.DTLVardef@1741cfforg.highwire.dtl.DTLVardef@1bde68_HPS_FORMAT_FIGEXP M_FIG GRAPHICAL SUMMARY C_FIG

8.
Preprint in English | medRxiv | ID: ppmedrxiv-20081026

ABSTRACT

We enrolled 53 consecutive in-patients with COVID-19 at six hospitals in Toronto, Canada, and tested one nasopharyngeal swab/saliva sample pair from each patient for SARS-CoV-2. Overall, sensitivity was 89% for nasopharyngeal swabs and 77% for saliva (p=NS); difference in sensitivity was greatest for sample pairs collected later in illness.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-037382

ABSTRACT

SARS-CoV-2 emerged in December 2019 in Wuhan, China and has since infected over 1.5 million people, of which over 107,000 have died. As SARS-CoV-2 spreads across the planet, speculations remain about the range of human cells that can be infected by SARS-CoV-2. In this study, we report the isolation of SARS-CoV-2 from two COVID-19 patients in Toronto, Canada. We determined the genomic sequences of the two isolates and identified single nucleotide changes in representative populations of our virus stocks. More importantly, we tested a wide range of human immune cells for productive infection with SARS-CoV-2. Here we confirm that human primary peripheral blood mononuclear cells (PBMCs) are not permissive to SARS-CoV-2. As SARS-CoV-2 continues to spread globally, it is essential to monitor small nucleotide polymorphisms in the virus and to continue to isolate circulating viruses to determine cell susceptibility and pathogenicity using in vitro and in vivo infection models.

SELECTION OF CITATIONS
SEARCH DETAIL
...