Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-502828

ABSTRACT

SARS-CoV-2 omicron BA.4 and BA.5, characterized by high transmissibility and ability to escape natural and vaccine induced immunity, are rampaging worldwide. To understand the escape mechanisms, we tested the neutralizing activity against omicron BA.4 and BA.5 of a panel of 482 human monoclonal antibodies that had been isolated from people who received two or three mRNA vaccine doses or from people that had been vaccinated after infection. None of the antibodies isolated after two vaccine doses neutralized omicron BA.4 and BA.5, while these variants were neutralized by approximately 15% of antibodies obtained from people that received three doses or had been vaccinated after infection. Remarkably, the antibodies isolated after three vaccine doses targeted mainly the receptor binding domain (RBD) Class 1/2 epitope region and were encoded by the IGHV1-69 and IGHV3-66 B cell germlines, while the antibodies isolated after infection recognized mostly the RBD Class 3 epitope region and the NTD, and were encoded by the IGHV2-5;IGHJ4-1 and IGHV1-24;IGHJ4-1 germlines. The observation that mRNA vaccination and hybrid immunity elicit a different immunity against the same antigen is intriguing and its understanding may help to design the next generation of therapeutics and vaccines against COVID-19.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-491201

ABSTRACT

The continuous evolution of SARS-CoV-2 generated highly mutated variants, like omicron BA.1 and BA.2, able to escape natural and vaccine-induced primary immunity1,2. The administration of a third dose of mRNA vaccines induces a secondary response with increased protection. We investigated, at single-cell level, the longitudinal evolution of the neutralizing antibody response in four donors after three mRNA doses3. A total of 4,100 spike protein specific memory B cells were single cell sorted and 350 neutralizing antibodies were identified. The third dose increased the antibody neutralization potency and breadth against all SARS-CoV-2 variants of concern as previously observed with hybrid immunity3. However, the B cell repertoire that stands behind the response is dramatically different. The increased neutralizing response was largely due to the expansion of B cell germlines poorly represented after two doses, and the reduction of germlines predominant after primary immunization such as IGHV3-53;IGHJ6-1 and IGHV3-66;IGHJ4-1. Divergently to hybrid immunity, cross-protection after a third dose was mainly guided by Class 1/2 antibodies encoded by IGHV1-58;IGHJ3-1 and IGHV1-69;IGHJ4-1 germlines. The IGHV2-5;IGHJ3-1 germline, which induced broadly cross-reactive Class 3 antibodies after infection or viral vector vaccination, was not induced by a third mRNA dose. Our data show that while neutralizing breadth and potency can be improved by different immunization regimens, each of them has a unique molecular signature which should be considered while designing novel vaccines and immunization strategies.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-456077

ABSTRACT

To understand the nature of the antibody response to SARS-CoV-2 vaccination, we analyzed at single cell level the B cell responses of five naive and five convalescent people immunized with the BNT162b2 mRNA vaccine. Convalescents had higher frequency of spike protein specific memory B cells and by cell sorting delivered 3,532 B cells, compared with 2,352 from naive people. Of these, 944 from naive and 2,299 from convalescents produced monoclonal antibodies against the spike protein and 411 of them neutralized the original Wuhan SARS-CoV-2 virus. More than 75% of the monoclonal antibodies from naive people lost their neutralization activity against the B.1.351 (beta) and B.1.1.248 (gamma) variants while this happened only for 61% of those from convalescents. The overall loss of neutralization was lower for the B.1.1.7 (alpha) and B.1.617.2 (delta) variants, however it was always significantly higher in those of naive people. In part this was due to the IGHV2-5;IGHJ4-1 germline, which was found only in convalescents and generated potent and broadly neutralizing antibodies. Overall, vaccination of seropositive people increases the frequency of B cells encoding antibodies with high potency and that are not susceptible to escape by any of the four variants of concern. Our data suggest that people that are seropositive following infection or primary vaccination will produce antibodies with increased potency and breadth and will be able to better control SARS-CoV-2 emerging variants.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-424451

ABSTRACT

To investigate the evolution of SARS-CoV-2 in the immune population, we co-incubated authentic virus with a highly neutralizing plasma from a COVID-19 convalescent patient. The plasma fully neutralized the virus for 7 passages, but after 45 days, the deletion of F140 in the spike N-terminal domain (NTD) N3 loop led to partial breakthrough. At day 73, an E484K substitution in the receptor-binding domain (RBD) occurred, followed at day 80 by an insertion in the NTD N5 loop containing a new glycan sequon, which generated a variant completely resistant to plasma neutralization. Computational modeling predicts that the deletion and insertion in loops N3 and N5 prevent binding of neutralizing antibodies. The recent emergence in the United Kingdom and South Africa of natural variants with similar changes suggests that SARS-CoV-2 has the potential to escape an effective immune response and that vaccines and antibodies able to control emerging variants should be developed. One Sentence SummaryThree mutations allowed SARS-CoV-2 to evade the polyclonal antibody response of a highly neutralizing COVID-19 convalescent plasma.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-328302

ABSTRACT

Human monoclonal antibodies are safe, preventive and therapeutic tools, that can be rapidly developed to help restore the massive health and economic disruption caused by the Covid-19 pandemic. By single cell sorting 4277 SARS-CoV-2 spike protein specific memory B cells from 14 Covid-19 survivors, 453 neutralizing antibodies were identified and 220 of them were expressed as IgG. Up to 65,9% of monoclonals neutralized the wild type virus at a concentration of >500 ng/mL, 23,6% neutralized the virus in the range of 100 - 500 ng/mL and 9,1% had a neutralization potency in the range of 10 - 100 ng/mL. Only 1,4% neutralized the authentic virus with a potency of 1-10 ng/mL. We found that the most potent neutralizing antibodies are extremely rare and recognize the RBD, followed in potency by antibodies that recognize the S1 domain, the S-protein trimeric structure and the S2 subunit. The three most potent monoclonal antibodies identified were able to neutralize the wild type and D614G mutant viruses with less than 10 ng/mL and are good candidates for the development of prophylactic and therapeutic tools against SARS-CoV-2. One Sentence SummaryExtremely potent neutralizing human monoclonal antibodies isolated from Covid-19 convalescent patients for prophylactic and therapeutic interventions.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-243717

ABSTRACT

A newly identified coronavirus, named SARS-CoV-2, emerged in December 2019 in Hubei Province, China, and quickly spread throughout the world; so far, it has caused more than 18 million cases of disease and 700,000 deaths. The diagnosis of SARS-CoV-2 infection is currently based on the detection of viral RNA in nasopharyngeal swabs by means of molecular-based assays, such as real-time RT-PCR. Furthermore, serological assays aimed at detecting different classes of antibodies constitute the best surveillance strategy for gathering information on the humoral immune response to infection and the spread of the virus through the population, in order to evaluate the immunogenicity of novel future vaccines and medicines for the treatment and prevention of COVID-19 disease. The aim of this study was to determine SARS-CoV-2-specific antibodies in human serum samples by means of different commercial and in-house ELISA kits, in order to evaluate and compare their results first with one another and then with those yielded by functional assays using wild-type virus. It is important to know the level of SARS-CoV-2-specific IgM, IgG and IgA antibodies in order to predict population immunity and possible cross-reactivity with other coronaviruses and to identify potentially infectious subjects. In addition, in a small sub-group of samples, we performed a subtyping Immunoglobulin G ELISA. Our data showed an excellent statistical correlation between the neutralization titer and the IgG, IgM and IgA ELISA response against the receptor-binding domain of the spike protein, confirming that antibodies against this portion of the virus spike protein are highly neutralizing and that the ELISA Receptor-Binding Domain-based assay can be used as a valid surrogate for the neutralization assay in laboratories which do not have Biosecurity level-3 facilities.

SELECTION OF CITATIONS
SEARCH DETAIL
...