ABSTRACT
With 76 currently valid species, the bushynose catfish genus Ancistrus is the fourth most species-rich catfish genus, yet Ancistrus diversity remains underestimated, with many species still undescribed. This is especially true of the Peruvian Andean headwaters of the Amazon, which are rich in unnamed Ancistrus species but have received little recent taxonomic attention. We describe a distinctively striped new Ancistrus species from tributaries of the Palcazú River, in the Pachitea-Ucayali-Amazonas drainage basin. The new species differs from all congeners by having black, vermiculated lines covering the head and two to four distinct black, parallel, lateral body stripes from head to caudal fin (vs. body uniformly colored or with dark or light spots or blotches over head and body, or black vermiculate lines on flanks). The new species is the fifth valid species of Ancistrus described from the rich Ucayali River ichthyofauna. It has previously been recognized in the aquarium fish trade as L267.
Subject(s)
Catfishes , Animals , Peru , Rivers , BrazilABSTRACT
Morphological examination of Potamoglanis specimens from three localities in the Essequibo River basin, Guyana, and one location in the Branco River basin, Brazil, confirmed their identification as Potamoglanis wapixana - a species originally described from only the Branco River basin. Morphological similarity of these miniature catfishes on opposite sides of the Rupununi savannah watershed divide and new records from lentic habitat suggest that either their modern populations predate the Pliocene division of the Branco and Essequibo rivers or the species is capable of living in and/or migrating across the Rupununi Portal - a seasonally flooded hydrological connection known to facilitate the movement of mostly much larger fishes between the Branco and Essequibo basins.
Subject(s)
Catfishes , Animals , Brazil , Ecosystem , Guyana , RiversABSTRACT
The catfish family Heptapteridae is ubiquitous across a range of freshwater habitats from southern Mexico to northern Argentina and contains 23 genera and 228 valid species. After a century of mostly morphology-based systematic analyses of these fishes, we provide the first molecular phylogenetic hypothesis spanning most valid Heptapteridae genera (16 of 23). We examined eight of 14 valid genera in the Nemuroglanis-subclade (Heptapterini), all valid genera in the Brachyglanis-subclade (Brachyglaniini) and most valid Brachyglaniini species (11 of 15). Maximum likelihood and Bayesian analyses of a 4156-base alignment of five gene regions (three mitochondrial: COI, Cyt b, and ND2; two nuclear: RAG2, Glyt) yielded thoroughly resolved and statistically robust phylogenies that were largely congruent with each other and with previous morphology-based hypotheses. We propose a revised phylogenetic classification consisting of two subfamilies (Rhamdiinae, Heptapterinae) each with two tribes. Dense taxonomic sampling of Brachyglaniini, including type species of Brachyglanis, Gladioglanis, Leptorhamdia, and Myoglanis, revealed widespread paraphyly. Newly recovered clades within Brachyglaniini are closely associated with either the upper Orinoco or the Essequibo suggesting repeated dispersals and/or range expansions/contractions across the western Guiana Shield highlands and from there to the upper Amazon and Brazilian Shield. These biogeographical processes appear to have been an important driver of allopatric diversification in the clade.
Subject(s)
Catfishes/classification , Catfishes/genetics , Phylogeny , Animals , Bayes Theorem , Cell Nucleus/genetics , Fresh WaterABSTRACT
A new species of the sand-dwelling catfish genus Ammoglanis is described from a marginal habitat of the lower Atabapo River, a left-bank blackwater tributary of the upper Orinoco River in Amazonas, Venezuela, adjacent to the border with Colombia. Ammoglanis natgeorum is distinguished from all congeners by trunk pigmentation pattern consisting of scattered ventral chromatophores concentrated around the anal-fin base and numerous additional meristic and anatomical characteristics. A. natgeorum is the second species of Ammoglanis described from the Orinoco River basin after Ammoglanis pulex, and several shared character states (e.g., eight total dorsal-fin rays, overall coloration pattern and presence of two finger-like papillae posterior to chin) suggest that it is more closely related to Ammoglanis obliquus (from the central Amazon basin) and A. pulex than to other congeners.
Subject(s)
Catfishes/anatomy & histology , Catfishes/classification , Animal Fins/anatomy & histology , Animals , Chromatophores , Pigmentation/physiology , Rivers , Species Specificity , VenezuelaABSTRACT
The suckermouth armored catfish genus Panaque contains seven valid species, including the Royal Pleco, Panaque nigrolineatus, which has long been popular as an ornamental aquarium fish and was originally described from the Apure River basin in Venezuela. We examine a phenotypically distinct population of P. nigrolineatus from the Guaviare River in southern Colombia at the southwesternmost corner of the Orinoco River basin. In contrast to typically boldly striped populations from closer to the type locality of P. nigrolineatus, the Guaviare River basin population is usually boldly spotted, earning them the common name Watermelon Pleco in the aquarium fish trade. Because of the commercial popularity of this distinctive color morph, it is heavily exploited for export to the global ornamental fish trade. We find that the Guaviare River P. nigrolineatus laurafabianae is not only distinct geographically and in color pattern, but is also morphometrically diagnosable from P. nigrolineatus individuals from outside the Guaviare River basin. However, relatively subtle phenotypic differences, invariance in nuclear DNA markers, < 0.5% divergence in mitochondrial DNA markers 16S, cytb, and ND2, and the non-monophyly of Guaviare River populations prevent us from robustly inferring species-level distinctiveness of the Watermelon Pleco. We therefore propose to recognize this population as a distinct subspecies.
Subject(s)
Catfishes , Rivers , Animals , Colombia , Phylogeny , WoodABSTRACT
High-altitude environments present a range of biochemical and physiological challenges for organisms through decreases in oxygen, pressure, and temperature relative to lowland habitats. Protein-level adaptations to hypoxic high-altitude conditions have been identified in multiple terrestrial endotherms; however, comparable adaptations in aquatic ectotherms, such as fishes, have not been as extensively characterized. In enzyme proteins, cold adaptation is attained through functional trade-offs between stability and activity, often mediated by substitutions outside the active site. Little is known whether signaling proteins [e.g., G protein-coupled receptors (GPCRs)] exhibit natural variation in response to cold temperatures. Rhodopsin (RH1), the temperature-sensitive visual pigment mediating dim-light vision, offers an opportunity to enhance our understanding of thermal adaptation in a model GPCR. Here, we investigate the evolution of rhodopsin function in an Andean mountain catfish system spanning a range of elevations. Using molecular evolutionary analyses and site-directed mutagenesis experiments, we provide evidence for cold adaptation in RH1. We find that unique amino acid substitutions occur at sites under positive selection in high-altitude catfishes, located at opposite ends of the RH1 intramolecular hydrogen-bonding network. Natural high-altitude variants introduced into these sites via mutagenesis have limited effects on spectral tuning, yet decrease the stability of dark-state and light-activated rhodopsin, accelerating the decay of ligand-bound forms. As found in cold-adapted enzymes, this phenotype likely compensates for a cold-induced decrease in kinetic rates-properties of rhodopsin that mediate rod sensitivity and visual performance. Our results support a role for natural variation in enhancing the performance of GPCRs in response to cold temperatures.
Subject(s)
Altitude , Rhodopsin/chemistry , Animals , Bayes Theorem , Biological Evolution , Bolivia , Catfishes , Cold Shock Proteins and Peptides/chemistry , Cold Temperature , Crystallography, X-Ray , Ecuador , Evolution, Molecular , Geography , HEK293 Cells , Humans , Kinetics , Mutation , Peru , PhylogenyABSTRACT
Identifying habitat characteristics that accelerate organismal evolution is essential to understanding both the origins of life on Earth and the ecosystem properties that are most critical to maintaining life into the future. Searching for these characteristics on a large scale has only recently become possible via advances in phylogenetic reconstruction, time-calibration, and comparative analyses. In this study, we combine these tools with habitat and phenotype data for 105 species in a clade of Neotropical suckermouth catfishes commonly known as cascudinhos. Our goal was to determine whether riverine mesohabitats defined by different flow rates (i.e., pools vs. rapids) and substrates (plants vs. rocks) have affected rates of cascudinho cladogenesis and morphological diversification. In contrast to predictions based on general theory related to life in fast-flowing, rocky riverine habitats, Neoplecostomini lineages associated with these habitats exhibited increased body size, head shape diversity, and lineage and phenotype diversification rates. These findings are consistent with a growing understanding of river rapids as incubators of biological diversification and specialization. They also highlight the urgent need to conserve rapids habitats throughout the major rivers of the world.
Subject(s)
Catfishes/classification , Ecosystem , Phylogeny , Tropical Climate , Water , Animals , Body Size , Calibration , Catfishes/anatomy & histology , Genetic Speciation , Head/anatomy & histology , Phenotype , Probability , Time FactorsABSTRACT
Approximately two-dozen species in three genera of the Neotropical suckermouth armored catfish family Loricariidae are the only described fishes known to specialize on diets consisting largely of wood. We conducted a molecular phylogenetic analysis of 10 described species and 14 undescribed species or morphotypes assigned to the wood-eating catfish genus Panaqolus, and four described species and three undescribed species or morphotypes assigned to the distantly related wood-eating catfish genus Panaque. Our analyses included individuals and species from both genera that are broadly distributed throughout tropical South America east of the Andes Mountains and 13 additional genera hypothesized to have also descended from the most recent common ancestor of Panaqolus and Panaque. Bayesian and maximum likelihood analyses of two mitochondrial and three nuclear loci totaling 4293bp confirmed respective monophyly of Panaqolus, exclusive of the putative congener 'Panaqolus' koko, and Panaque. Members of Panaqolus sensu stricto were distributed across three strongly monophyletic clades: a clade of 10 generally darkly colored, lyretail species distributed across western headwaters of the Amazon Basin, a clade of three irregularly and narrowly banded species from the western Orinoco Basin, and a clade of 11 generally brown, broadly banded species that are widely distributed throughout the Amazon Basin. We erect new subgenera for each of these clades and a new genus for the morphologically, biogeographically and ecologically distinct species 'Panaqolus' koko. Our finding that perhaps half of the species-level diversity in the widespread genus Panaqolus remains undescribed illustrates the extent to which total taxonomic diversity of small and philopatric, yet apparently widely distributed, Amazonian fishes may remain underestimated. Ranges for two Panaqolus subgenera and the genus Panaque overlap with the wood-eating genus Cochliodon in central Andean tributaries of the upper Amazon Basin, which appear to be a global epicenter of wood-eating catfish diversity.
Subject(s)
Catfishes/classification , Genetic Variation , Animals , Bayes Theorem , Catfishes/genetics , Molecular Typing , Phylogeny , Sequence Analysis, DNA , South America , WoodABSTRACT
Ecological opportunity is often proposed as a driver of accelerated diversification, but evidence has been largely derived from either contemporary island radiations or the fossil record. Here, we investigate the potential influence of ecological opportunity on a transcontinental radiation of South American freshwater fishes. We generate a species-dense, time-calibrated molecular phylogeny for the suckermouth armored catfish subfamily Hypostominae, with a focus on the species-rich and geographically widespread genus Hypostomus. We use the resulting chronogram to estimate ancestral geographical ranges, infer historical rates of cladogenesis and diversification in habitat and body size and shape, and test the hypothesis that invasions of previously unoccupied river drainages accelerated evolution and contributed to adaptive radiation. Both the subfamily Hypostominae and the included genus Hypostomus originated in the Amazon/Orinoco ecoregion. Hypostomus subsequently dispersed throughout tropical South America east of the Andes Mountains. Consequent to invasion of the peripheral, low-diversity Paraná River basin in southeastern Brazil approximately 12.5 Mya, Paraná lineages of Hypostomus, experienced increased rates of cladogenesis and ecological and morphological diversification. Contemporary lineages of Paraná Hypostomus are less species rich but more phenotypically diverse than their congeners elsewhere. Accelerated speciation and morphological diversification rates within Paraná basin Hypostomus are consistent with adaptive radiation. The geographical remoteness of the Paraná River basin, its recent history of marine incursion, and its continuing exclusion of many species that are widespread in other tropical South American rivers suggest that ecological opportunity played an important role in facilitating the observed accelerations in diversification.
Subject(s)
Adaptation, Biological/genetics , Catfishes/classification , Genetic Speciation , Phylogeny , Animal Distribution , Animals , Bayes Theorem , Body Size , Catfishes/anatomy & histology , Catfishes/genetics , Ecosystem , Geography , Likelihood Functions , Sequence Analysis, DNA , South AmericaABSTRACT
Limatulichthys nasarcus n. sp. is described as a new species based on 15 specimens from the Ventuari and Caura Rivers in Southern Venezuela. The new species can be distinguished from its only congener, L. griseus, by the presence of anterior abdominal plates half the size of those at center of abdomen (vs. plates similar in size); distinct spots less than half of diameter of naris across entire dorsum, including snout and head (vs. indistinct dorsal spots larger or equal than diameter of naris); lateral portions of head and opercle with dark well-defined spots larger than those on dorsum (vs. spots on lateral portions of head and opercle equal in size to those on remainder of body); snout profile in dorsal view broadly rounded (vs. acutely triangular); head longer (21.4-24.2 SL vs. 17.7-21.0%); and anal fin longer (15.7-18.0 SL vs. 13.7-15.6%). Distinctiveness of the two species is further supported by their non-overlapping distribution in multivariate morphospace. The disjunct distribution of L. nasarcus across both the Caura and Ventuari rivers exclusive of the main Orinoco River channel contributes to a growing body of evidence supporting the historical connection between headwaters of these drainages. The hypothesized existence of a 'proto-Berbice' paleodrainage provides one explanation for such a connection.
Subject(s)
Fishes/anatomy & histology , Fishes/classification , Animal Distribution , Animals , Fishes/physiology , Rivers , VenezuelaABSTRACT
Panaqolus albivermis is described as a new species based on four specimens from the San Alejandro River, a tributary of the upper Ucayali River in central Peru. Panaqolus albivermis is diagnosed from all other Panaqolus except P. maccus by having head, body, and fins with widely separated small white to yellow spots, vermiculations, and/or thin oblique bands on a black base (vs. exclusively small white to yellow spots on a black base in P. alboinaculatus, generally broad oblique bands of alternating light to dark brown in P. changae, P. gnomus, P purusiensis, and a uniformly dark gray to black body color in P. dentex, P. koko, and P. nocturnus); P. albivernis can be diagnosed from P. maccus by having a black base color (vs. brown), by having parallel dentary tooth cups (vs. acute intermandibular tooth cup angle), and by having a larger known adult body size (95.8 mm SL vs. 84.8).
Subject(s)
Catfishes/classification , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Body Size , Catfishes/anatomy & histology , Catfishes/growth & development , Ecosystem , Female , Male , Organ Size , Peru , RiversABSTRACT
BACKGROUND: The Neotropical catfish family Loricariidae contains over 830 species that display extraordinary variation in jaw morphologies but nonetheless reveal little interspecific variation from a generalized diet of detritus and algae. To investigate this paradox, we collected δ13C and δ15N stable isotope signatures from 649 specimens representing 32 loricariid genera and 82 species from 19 local assemblages distributed across South America. We calculated vectors representing the distance and direction of each specimen relative to the δ15N/δ13C centroid for its local assemblage, and then examined the evolutionary diversification of loricariids across assemblage isotope niche space by regressing the mean vector for each genus in each assemblage onto a phylogeny reconstructed from osteological characters. RESULTS: Loricariids displayed a total range of δ15N assemblage centroid deviation spanning 4.9, which is within the tissue-diet discrimination range known for Loricariidae, indicating that they feed at a similar trophic level and that δ15N largely reflects differences in their dietary protein content. Total range of δ13C deviation spanned 7.4, which is less than the minimum range reported for neotropical river fish communities, suggesting that loricariids selectively assimilate a restricted subset of the full basal resource spectrum available to fishes. Phylogenetic regression of assemblage centroid-standardized vectors for δ15N and δ13C revealed that loricariid genera with allopatric distributions in disjunct river basins partition basal resources in an evolutionarily conserved manner concordant with patterns of jaw morphological specialization and with evolutionary diversification via ecological radiation. CONCLUSIONS: Trophic partitioning along elemental/nutritional gradients may provide an important mechanism of dietary segregation and evolutionary diversification among loricariids and perhaps other taxonomic groups of apparently generalist detritivores and herbivores. Evolutionary patterns among the Loricariidae show a high degree of trophic niche conservatism, indicating that evolutionary lineage affiliation can be a strong predictor of how basal consumers segregate trophic niche space.
Subject(s)
Biological Evolution , Catfishes/classification , Animals , Carbon Isotopes/analysis , Catfishes/anatomy & histology , Food Chain , Nitrogen Isotopes/analysis , Phylogeny , South AmericaABSTRACT
Lithoxus jantjae, new species, is described from above Tencua Falls in headwaters of the Ventuari River, a white- to clearwater river flowing west from the Maigualida and Parima mountains in the Guayana Highlands of southern Venezuela. Lithoxus jantjae represents a nearly 600 km westward range expansion for a genus historically known only from Guyana, Suriname, French Guiana, and Brazil. Lithoxus jantjae shares with other species of Lithoxus a dorsoventrally depressed body and a large, papilose oral disk with small toothcups and few teeth. It can be distinguished from congeners by a unique combination of characters including 12 branched caudal-fin rays, medial premaxillary tooth cusps enlarged, and a convex posterior margin of the adipose-fin membrane. With the discovery of L. jantjae, Lithoxus becomes the most recent example of a growing list of rheophilic loricariid genera with disjunct distributions on east and west sides of the Guayana Highlands. A biogeographic hypothesis relying on the existence of a proto-Berbice River uniting the southern Guayana Highlands with rivers of the central Guiana Shield is advanced to partially explain the modern distribution of these species.(AU)
Lithoxus jantjae, espécie nova, é descrito da região acima das cachoeiras de Tencua, nas cabeceiras do rio Ventuari, um rio de águas brancas a claras que corre para o oeste das montanhas Maigualida e Parima nas Terras Altas de Guayana, sul da Venezuela. Lithoxus jantjae amplia em cerca de 600 km para o oeste a distribuição de um gênero historicamente conhecido somente da Guiana, Suriname, Guiana Francesa e Brasil. Lithoxus jantjae compartilha com outras espécies de Lithoxus o corpo deprimido e um disco oral grande e papiloso, com pequenos dentários e premaxilares e poucos dentes. Ele é distinguido dos congêneres por uma combinação única de caracteres incluindo 12 raios caudais medianos ramificados, cúspide medial dos dentes do premaxilar aumentada e uma margem posterior convexa na membrana da nadadeira adiposa. Com a descoberta de L. jantjae, Lithoxus torna-se o exemplo mais recente de uma lista de gêneros de loricariídeos reofílicos com distribuição disjunta nos lados leste e oeste das Terras Altas de Guayana. Uma hipótese biogeográfica baseada na existência de um rio proto-Berbice unindo o sul das Terras Altas de Guayana com os rios do escudo central das Guianas é proposta a fim de explicar a distribuição moderna destas espécies.(AU)
Subject(s)
Animals , Catfishes/classification , Species Specificity , Biodiversity , Fishes , Phylogeography , Tropical EcosystemABSTRACT
Lithoxus jantjae, new species, is described from above Tencua Falls in headwaters of the Ventuari River, a white- to clearwater river flowing west from the Maigualida and Parima mountains in the Guayana Highlands of southern Venezuela. Lithoxus jantjae represents a nearly 600 km westward range expansion for a genus historically known only from Guyana, Suriname, French Guiana, and Brazil. Lithoxus jantjae shares with other species of Lithoxus a dorsoventrally depressed body and a large, papilose oral disk with small toothcups and few teeth. It can be distinguished from congeners by a unique combination of characters including 12 branched caudal-fin rays, medial premaxillary tooth cusps enlarged, and a convex posterior margin of the adipose-fin membrane. With the discovery of L. jantjae, Lithoxus becomes the most recent example of a growing list of rheophilic loricariid genera with disjunct distributions on east and west sides of the Guayana Highlands. A biogeographic hypothesis relying on the existence of a proto-Berbice River uniting the southern Guayana Highlands with rivers of the central Guiana Shield is advanced to partially explain the modern distribution of these species.
Lithoxus jantjae, espécie nova, é descrito da região acima das cachoeiras de Tencua, nas cabeceiras do rio Ventuari, um rio de águas brancas a claras que corre para o oeste das montanhas Maigualida e Parima nas Terras Altas de Guayana, sul da Venezuela. Lithoxus jantjae amplia em cerca de 600 km para o oeste a distribuição de um gênero historicamente conhecido somente da Guiana, Suriname, Guiana Francesa e Brasil. Lithoxus jantjae compartilha com outras espécies de Lithoxus o corpo deprimido e um disco oral grande e papiloso, com pequenos dentários e premaxilares e poucos dentes. Ele é distinguido dos congêneres por uma combinação única de caracteres incluindo 12 raios caudais medianos ramificados, cúspide medial dos dentes do premaxilar aumentada e uma margem posterior convexa na membrana da nadadeira adiposa. Com a descoberta de L. jantjae, Lithoxus torna-se o exemplo mais recente de uma lista de gêneros de loricariídeos reofílicos com distribuição disjunta nos lados leste e oeste das Terras Altas de Guayana. Uma hipótese biogeográfica baseada na existência de um rio proto-Berbice unindo o sul das Terras Altas de Guayana com os rios do escudo central das Guianas é proposta a fim de explicar a distribuição moderna destas espécies.