Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Article in English | WPRIM (Western Pacific) | ID: wpr-982368

ABSTRACT

Non-exosomal non-coding RNAs (non-exo-ncRNAs) and exosomal ncRNAs (exo-ncRNAs) have been associated with the pathological development of myocardial infarction (MI). Accordingly, this analytical review provides an overview of current MI studies on the role of plasma non-exo/exo-ncRNAs. We summarize the features and crucial roles of ncRNAs and reveal their novel biological correlations via bioinformatics analysis. The following contributions are made: (1) we comprehensively describe the expression profile, competing endogenous RNA (ceRNA) network, and "pre-necrotic" biomarkers of non-exo/exo-ncRNAs for MI; (2) functional enrichment analysis indicates that the target genes of ncRNAs are enriched in the regulation of apoptotic signaling pathway and cellular response to chemical stress, etc.; (3) we propose an updated and comprehensive view on the mechanisms, pathophysiology, and biomarker roles of non-exo/exo-ncRNAs in MI, thereby providing a theoretical basis for the clinical management of MI.


Subject(s)
Humans , RNA, Untranslated/genetics , RNA , Myocardial Infarction/genetics , Biomarkers , Computational Biology , MicroRNAs/genetics
2.
Cell Death Dis ; 9(3): 320, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29476052

ABSTRACT

Remote ischaemic preconditioning (RIPC) is well known to protect the myocardium against ischaemia/reperfusion injury (IRI). Exosomes are small extracellular vesicles that have become the key mediators of intercellular communication. Various studies have confirmed that circulating exosomes mediate RIPC. However, the underlying mechanisms for RIPC-induced exosome-mediated cardioprotection remain elusive. In our study, we found that the expression level of miR-24 was higher in exosomes derived from the plasma of rats subjected to RIPC than in exosomes derived from the plasma of control rats in vivo. The rat plasma exosomes could be taken up by H9c2 cells. In addition, miR-24 was present in RIPC-induced exosomes and played a role in reducing oxidative stress-mediated injury and decreasing apoptosis by downregulating Bim expression in H2O2-treated H9c2 cells in vitro. In vivo, miR-24 in RIPC-induced exosomes reduced cardiomyocyte apoptosis, attenuated the infarct size and improved heart function. Furthermore, the apoptosis-reducing effect of miR-24 was counteracted by miR-24 antagomirs or inhibitors both in vitro and in vivo. Therefore, we provided evidence that RIPC-induced exosomes could reduce apoptosis by transferring miR-24 in a paracrine manner and that miR-24 in the exosomes plays a central role in mediating the protective effects of RIPC.


Subject(s)
Exosomes/metabolism , Ischemic Preconditioning, Myocardial , MicroRNAs/therapeutic use , Myocardial Reperfusion Injury/blood , Myocardial Reperfusion Injury/therapy , Animals , Apoptosis , Disease Models, Animal , Hydrogen Peroxide/toxicity , Male , Mice , Models, Biological , Myocardial Reperfusion Injury/genetics , Myocytes, Cardiac/metabolism , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...