Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
2.
Pharmacol Rep ; 70(3): 446-454, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29627691

ABSTRACT

BACKGROUND: Thiazolidine-2,4-dione ring system is used as a pharmacophore to build various heterocyclic compounds aimed to interact with biological targets. In the present study, benzylidene-2,4-thiazolidinedione derivatives (compounds 2-5) were synthesized and screened against cancer cell lines and the genotoxicity and cytotoxicity of the most active compound (5) was investigated on normal and lung cancer cell line. METHODS: For in vitro cytotoxic screening, the MTT assay was used for HL60 and K562 (leukemia), MCF-7 (breast adenocarcinoma), HT29 (colon adenocarcinoma), HEp-2 (cervix carcinoma) and NCI-H292 (lung carcinoma) tumor cell lines and Alamar-blue assay was used for non-tumor cells (PBMC, human peripheral blood mononuclear cells) were used. Cell morphology was visualized after Giemsa-May-Grunwald staining. DNA content, phosphatidylserine externalization and mitochondrial depolarization were measured by flow cytometry. Genotoxicity was assessed by Comet assay. RESULTS: 5-(2-Bromo-5-methoxybenzylidene)-thiazolidine-2,4-dione (5) presented the most potent cytotoxicity, especially against NCI-H292 lung cancer cell line, with IC50 value of 1.26µg/mL after 72h incubation. None of the compounds were cytotoxic to PBMC. After 48h incubation, externalization of phosphatidylserine, mitochondrial depolarization, internucleosomal DNA fragmentation and morphological alterations consistent with apoptosis were observed in NCI-H292 cells treated with compound (5). In addition, compound (5) also induced genotoxicity in NCI-H292 cells (2.8-fold increase in damage index compared to the negative control), but not in PBMC. CONCLUSION: Compound 5 presented selective cytotoxic and genotoxic activity against pulmonary carcinoma (NCI-H292 cells).


Subject(s)
Antineoplastic Agents/pharmacology , Cytotoxins/pharmacology , Lung Neoplasms/drug therapy , Mutagens/pharmacology , Thiazolidinediones/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Comet Assay/methods , DNA Fragmentation/drug effects , HL-60 Cells , Humans , K562 Cells , Leukocytes, Mononuclear/drug effects , MCF-7 Cells
3.
An Acad Bras Cienc ; 89(2): 1051-1059, 2017.
Article in English | MEDLINE | ID: mdl-28640352

ABSTRACT

A series of arylamidines 3a-j was designed, synthesized and investigated for antimicrobial activity. Structures of the compounds were confirmed by IR, 1H-NMR and 13C-NMR and a 2D spectroscopic study was performed. A preliminary screening of the antimicrobial tests clearly showed that three out of ten arylamidines, viz, 3f, 3g and 3i, were effective against all the gram-negative bacteria: Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella enteric; and against the yeast, candida albicans. Further, the Minimum Inhibitory Concentrations (MIC) against the bacteria and yeast were determined. All compounds 3a-d, 3f, 3g, 3i and 3j were also investigated for their low cytotoxic effects on tested cell lines. Compounds 3d and 3f were the most effective derivatives against HL-60 and HEp-2 cells, respectively, with IC50 value (2µg/mL), and low normal cells toxicity.


Subject(s)
Amidines/chemical synthesis , Amidines/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Candida albicans/drug effects , Gram-Negative Bacteria/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Materials Testing , Microbial Sensitivity Tests , Reproducibility of Results , Spectrophotometry, Infrared , Tetrazolium Salts , Thiazoles , Toxicity Tests
4.
An. acad. bras. ciênc ; 89(2): 1051-1059, Apr.-June 2017. tab, graf
Article in English | LILACS | ID: biblio-886697

ABSTRACT

ABSTRACT A series of arylamidines 3a-j was designed, synthesized and investigated for antimicrobial activity. Structures of the compounds were confirmed by IR, 1H-NMR and 13C-NMR and a 2D spectroscopic study was performed. A preliminary screening of the antimicrobial tests clearly showed that three out of ten arylamidines, viz, 3f, 3g and 3i, were effective against all the gram-negative bacteria: Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella enteric; and against the yeast, candida albicans. Further, the Minimum Inhibitory Concentrations (MIC) against the bacteria and yeast were determined. All compounds 3a-d, 3f, 3g, 3i and 3j were also investigated for their low cytotoxic effects on tested cell lines. Compounds 3d and 3f were the most effective derivatives against HL-60 and HEp-2 cells, respectively, with IC50 value (2µg/mL), and low normal cells toxicity.


Subject(s)
Humans , Candida albicans/drug effects , Amidines/chemical synthesis , Amidines/pharmacology , Gram-Negative Bacteria/drug effects , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Spectrophotometry, Infrared , Tetrazolium Salts , Thiazoles , Materials Testing , Microbial Sensitivity Tests , Reproducibility of Results , Toxicity Tests , Cell Line, Tumor , Cell Proliferation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...