Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Metabolites ; 13(11)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37999230

ABSTRACT

Lactic acid bacteria (LAB) are pivotal in shaping the technological, sensory, and safety aspects of dairy products. The evaluation of proteolytic activity, citrate utilization, milk pH reduction, and the production of organic compounds, acetoin, and diacetyl by cheese associated LAB strains was carried out, followed by Principal Component Analysis (PCA). Citrate utilization was observed in all Leuconostoc (Le.) mesenteroides, Le. citreum, Lactococcus (Lc.) lactis, Lc. garvieae, and Limosilactobacillus (Lm.) fermentum strains, and in some Lacticaseibacillus (Lact.) casei strains. Most strains exhibited proteolytic activity, reduced pH, and generated organic compounds. Multivariate PCA revealed Le. mesenteroides as a prolific producer of acetic, lactic, formic, and pyruvic acids and acetoin at 30 °C. Enterococcus sp. was distinguished from Lact. casei based on acetic, formic, and pyruvic acid production, while Lact. casei primarily produced lactic acid at 37 °C. At 42 °C, Lactobacillus (L.) helveticus and some L. delbrueckii subsp. bulgaricus strains excelled in acetoin production, whereas L. delbrueckii subsp. bulgaricus and Streptococcus (S.) thermophilus strains primarily produced lactic acid. Lm. fermentum stood out with its production of acetic, formic, and pyruvic acids. Overall, cheese-associated LAB strains exhibited diverse metabolic capabilities which contribute to desirable aroma, flavor, and safety of dairy products.

3.
Braz J Microbiol ; 52(3): 1181-1190, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33660233

ABSTRACT

Derived compounds from lignin have been used as substrates for chemical and biological processes for obtainment bioproducts. The ferulic acid is a lignocellulosic biomass whose biotransformation in flavors compounds was described. The objective of this study was the bioconversion of ferulic acid to 4-vinylguaiacol by Klebsiella pneumoniae TD 4.7. The biotransformation of commercial ferulic acid into 4-vinylguaiacol in a semi synthetic liquid medium containing the ferulic acid at an initial concentration of 300 mg L-1 reached 32.4%. The ferulic acid obtained from alkaline hydrolysis of the sugar cane bagasse at 300 mg L-1 allowed the yield of 1.3 mmol L-1 of 4-vinylguaiacol, corresponding to 81.7% of the ferulic acid content. The data indicated that the bacterial strain decarboxylated the ferulic acid to 4-vinylguaiacol and the presence of an active cell associated ferulic acid decarboxylase. The enzyme showed maximum activity at pH 5.5 and 40 °C and was stable at pH range 4.5 to 9.0 and temperature up 20 to 45 °C. According to these biochemical properties and performance to bioconversion of ferulic acid to 4-vinylguaiacol, this enzyme could be viable for application in food industry.


Subject(s)
Coumaric Acids , Klebsiella pneumoniae , Biotransformation , Coumaric Acids/metabolism , Klebsiella pneumoniae/metabolism , Lignin
4.
Biomed Res Int ; 2020: 5324391, 2020.
Article in English | MEDLINE | ID: mdl-33083471

ABSTRACT

The main organochlorinated compounds used on agricultural crops are often recalcitrant, affecting nontarget organisms and contaminating rivers or groundwater. Diuron (N-(3,4-dichlorophenyl)-N',N'-dimethylurea) is a chlorinated herbicide widely used in sugarcane plantations. Here, we evaluated the ability of 13 basidiomycete strains of growing in a contaminated culture medium and degrading the xenobiotic. Dissipation rates in culture medium with initial 25 mg/L of diuron ranged from 7.3 to 96.8%, being Pluteus cubensis SXS 320 the most efficient strain, leaving no detectable residues after diuron metabolism. Pycnoporus sanguineus MCA 16 removed 56% of diuron after 40 days of cultivation, producing three metabolites more polar than parental herbicide, two of them identified as being DCPU and DCPMU. Despite of the strong inductive effect of diuron upon laccase synthesis and secretion, the application of crude enzymatic extracts of P. sanguineus did not catalyzed the breakdown of the herbicide in vitro, indicating that diuron biodegradation was not related to this oxidative enzyme.


Subject(s)
Basidiomycota/metabolism , Biodegradation, Environmental , Diuron/pharmacokinetics , Herbicides/pharmacokinetics , Water Pollutants, Chemical/pharmacokinetics , Agaricales/metabolism , Basidiomycota/drug effects , Basidiomycota/growth & development , Cytochrome P-450 Enzyme System/metabolism , Diuron/toxicity , Herbicides/toxicity , Hydrocarbons, Chlorinated/pharmacokinetics , Hydrocarbons, Chlorinated/toxicity , Laccase/metabolism , Models, Biological , Nitrogen/metabolism , Polyporaceae/metabolism , Rainforest , Water Pollutants, Chemical/toxicity
5.
BMC Microbiol ; 20(1): 266, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32847512

ABSTRACT

BACKGROUND: Atrazine is one of the most widespread chlorinated herbicides, leaving large bulks in soils and groundwater. The biodegradation of atrazine by bacteria is well described, but many aspects of the fungal metabolism of this compound remain unclear. Thus, we investigated the toxicity and degradation of atrazine by 13 rainforest basidiomycete strains. RESULTS: In liquid medium, Pluteus cubensis SXS320, Gloelophyllum striatum MCA7, and Agaricales MCA17 removed 30, 37, and 38%, respectively, of initial 25 mg L- 1 of the herbicide within 20 days. Deficiency of nitrogen drove atrazine degradation by Pluteus cubensis SXS320; this strain removed 30% of atrazine within 20 days in a culture medium with 2.5 mM of N, raising three metabolites; in a medium with 25 mM of N, only 21% of initial atrazine were removed after 40 days, and two metabolites appeared in culture extracts. This is the first report of such different outcomes linked to nitrogen availability during the biodegradation of atrazine by basidiomycetes. The herbicide also induced synthesis and secretion of extracellular laccases by Datronia caperata MCA5, Pycnoporus sanguineus MCA16, and Polyporus tenuiculus MCA11. Laccase levels produced by of P. tenuiculus MCA11 were 13.3-fold superior in the contaminated medium than in control; the possible role of this enzyme on atrazine biodegradation was evaluated, considering the strong induction and the removal of 13.9% of the herbicide in vivo. Although 88% of initial laccase activity remained after 6 h, no evidence of in vitro degradation was observed, even though ABTS was present as mediator. CONCLUSIONS: This study revealed a high potential for atrazine biodegradation among tropical basidiomycete strains. Further investigations, focusing on less explored ligninolytic enzymes and cell-bound mechanisms, could enlighten key aspects of the atrazine fungal metabolism and the role of the nitrogen in the process.


Subject(s)
Agaricales/drug effects , Agaricales/metabolism , Atrazine/metabolism , Laccase/metabolism , Agaricales/growth & development , Agaricales/isolation & purification , Atrazine/pharmacology , Biodegradation, Environmental , Culture Media , Environmental Pollutants/metabolism , Extracellular Matrix/enzymology , Fungal Proteins/metabolism , Nitrogen/metabolism , Polyporaceae/drug effects , Polyporaceae/metabolism , Rainforest , Species Specificity
6.
Int J Mol Sci ; 19(10)2018 Oct 06.
Article in English | MEDLINE | ID: mdl-30301234

ABSTRACT

Xanthomonas citri subsp. citri (Xcc) causes citrus canker, affecting sweet orange-producing areas around the world. The current chemical treatment available for this disease is based on cupric compounds. For this reason, the objective of this study was to design antibacterial agents. In order to do this, we analyzed the anti-Xcc activity of 36 alkyl dihydroxybenzoates and we found 14 active compounds. Among them, three esters with the lowest minimum inhibitory concentration values were selected; compounds 4 (52 µM), 16 (80 µM) and 28 (88 µM). Our study demonstrated that alkyl dihydroxybenzoates cause a delay in the exponential phase. The permeability capacity of alkyl dihydroxybenzoates in a quarter of MIC was compared to nisin (positive control). Compound 28 was the most effective (93.8), compared to compound 16 (41.3) and compound 4 (13.9) by percentage values. Finally, all three compounds showed inhibition of FtsZ GTPase activity, and promoted changes in protofilaments, leading to depolymerization, which prevents bacterial cell division. In conclusion, heptyl dihydroxybenzoates (compounds 4, 16 and 28) are promising anti-Xcc agents which may serve as an alternative for the control of citrus canker.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Design , Hydroxybenzoates/chemistry , Hydroxybenzoates/pharmacology , Xanthomonas/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/isolation & purification , Cell Membrane Permeability/drug effects , GTP Phosphohydrolases/antagonists & inhibitors , Hydroxybenzoates/chemical synthesis , Microbial Sensitivity Tests , Molecular Structure , Plant Diseases/microbiology
7.
Braz. j. microbiol ; 49(1): 162-168, Jan.-Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-889200

ABSTRACT

ABSTRACT For the implementation of cellulosic ethanol technology, the maximum use of lignocellulosic materials is important to increase efficiency and to reduce costs. In this context, appropriate use of the pentose released by hemicellulose hydrolysis could improve de economic viability of this process. Since the Saccharomyces cerevisiae is unable to ferment the pentose, the search for pentose-fermenting microorganisms could be an alternative. In this work, the isolation of yeast strains from decaying vegetal materials, flowers, fruits and insects and their application for assimilation and alcoholic fermentation of xylose were carried out. From a total of 30 isolated strains, 12 were able to assimilate 30 g L-1 of xylose in 120 h. The strain Candida tropicalis S4 produced 6 g L-1 of ethanol from 56 g L-1 of xylose, while the strain C. tropicalis E2 produced 22 g L-1 of xylitol. The strains Candida oleophila G10.1 and Metschnikowia koreensis G18 consumed significant amount of xylose in aerobic cultivation releasing non-identified metabolites. The different materials in environment were source for pentose-assimilating yeast with variable metabolic profile.


Subject(s)
Pentoses/metabolism , Xylose/metabolism , Yeasts/metabolism , Vegetables/microbiology , Xylitol/metabolism , Yeasts/isolation & purification , Yeasts/classification , Yeasts/genetics , Ethanol/metabolism , Fermentation
8.
Braz J Microbiol ; 49(1): 162-168, 2018.
Article in English | MEDLINE | ID: mdl-28888830

ABSTRACT

For the implementation of cellulosic ethanol technology, the maximum use of lignocellulosic materials is important to increase efficiency and to reduce costs. In this context, appropriate use of the pentose released by hemicellulose hydrolysis could improve de economic viability of this process. Since the Saccharomyces cerevisiae is unable to ferment the pentose, the search for pentose-fermenting microorganisms could be an alternative. In this work, the isolation of yeast strains from decaying vegetal materials, flowers, fruits and insects and their application for assimilation and alcoholic fermentation of xylose were carried out. From a total of 30 isolated strains, 12 were able to assimilate 30gL-1 of xylose in 120h. The strain Candida tropicalis S4 produced 6gL-1 of ethanol from 56gL-1 of xylose, while the strain C. tropicalis E2 produced 22gL-1 of xylitol. The strains Candida oleophila G10.1 and Metschnikowia koreensis G18 consumed significant amount of xylose in aerobic cultivation releasing non-identified metabolites. The different materials in environment were source for pentose-assimilating yeast with variable metabolic profile.


Subject(s)
Pentoses/metabolism , Xylose/metabolism , Yeasts/metabolism , Ethanol/metabolism , Fermentation , Vegetables/microbiology , Xylitol/metabolism , Yeasts/classification , Yeasts/genetics , Yeasts/isolation & purification
9.
J Agric Food Chem ; 64(49): 9268-9275, 2016 Dec 14.
Article in English | MEDLINE | ID: mdl-27960295

ABSTRACT

Microorganisms capable of degrading herbicides are essential to minimize the amount of chemical compounds that may leach into other environments. This work aimed to study the potential of sandy-loam soil fungi to tolerate the herbicide Herburon (50% diuron) and to degrade the active ingredient diuron. Verticillium sp. F04, Trichoderma virens F28, and Cunninghamella elegans B06 showed the highest growth in the presence of the herbicide. The evaluation of biotransformation showed that Aspergillus brasiliensis G08, Aspergillus sp. G25, and Cunninghamella elegans B06 had the greatest potential to degrade diuron. Statistical analysis demonstrated that glucose positively influences the potential of the microorganism to degrade diuron, indicating a cometabolic process. Due to metabolites founded by diuron biotransformation, it is indicated that the fungi are relevant in reducing the herbicide concentration in runoff, minimizing the environmental impact on surrounding ecosystems.


Subject(s)
Diuron/metabolism , Fungi/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Biodegradation, Environmental , Biotransformation , Fungi/genetics , Fungi/isolation & purification , Saccharum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...