Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Commun Biol ; 7(1): 294, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461214

ABSTRACT

The continuing emergence of new strains of antibiotic-resistant bacteria has renewed interest in phage therapy; however, there has been limited progress in applying phage therapy to multi-drug resistant Mycobacterium tuberculosis (Mtb) infections. In this study, we show that bacteriophage strains D29 and DS6A can efficiently lyse Mtb H37Rv in 7H10 agar plates. However, only phage DS6A efficiently kills H37Rv in liquid culture and in Mtb-infected human primary macrophages. We further show in subsequent experiments that, after the humanized mice were infected with aerosolized H37Rv, then treated with DS6A intravenously, the DS6A treated mice showed increased body weight and improved pulmonary function relative to control mice. Furthermore, DS6A reduces Mtb load in mouse organs with greater efficacy in the spleen. These results demonstrate the feasibility of developing phage therapy as an effective therapeutic against Mtb infection.


Subject(s)
Mycobacterium tuberculosis , Phage Therapy , Tuberculosis , Animals , Mice , Humans , Tuberculosis/therapy , Tuberculosis/microbiology , Macrophages/microbiology
2.
bioRxiv ; 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36747734

ABSTRACT

The continuing emergence of new strains of antibiotic-resistant bacteria has renewed interest in phage therapy; however, there has been limited progress in applying phage therapy to multi-drug resistant Mycobacterium tuberculosis (Mtb) infections. In this study, we tested three bacteriophage strains for their Mtb-killing activities and found that two of them efficiently lysed Mtb H37Rv in 7H10 agar plates. However, only phage DS6A efficiently killed H37Rv in liquid culture and in Mtb-infected human primary macrophages. In subsequent experiments, we infected humanized mice with aerosolized H37Rv, then treated these mice with DS6A intravenously to test its in vivo efficacy. We found that DS6A treated mice showed increased body weight and improved pulmonary function relative to control mice. Furthermore, DS6A reduced Mtb load in mouse organs with greater efficacy in the spleen. These results demonstrated the feasibility of developing phage therapy as an effective therapeutic against Mtb infection.

3.
Braz. J. Pharm. Sci. (Online) ; 59: e20052, 2023. graf
Article in English | LILACS | ID: biblio-1429959

ABSTRACT

Abstract The pathogenesis of systemic lupus erythematosus (SLE) is complex. Few studies in Brazilian population have addressed cell phenotypes associated with immunological responses and their associations with SLE activity. The aim of this study is to investigate cell phenotypes associated to SLE diagnosis, treatment and activity. Twenty-eight SLE female patients (17 inactive, 11 active) and 10 healthy women were included in this study. Markers of natural killer (Nk), T and B cells in peripheral blood were evaluated by flow cytometry. Nkt cells were decreased only in SLE active patients. Activated CD4+, regulatory T FoxP3+ and B cells were decreased in both active and inactive SLE patients, compared to control group. The data corroborate the disruption of immune regulatory response in SLE patients and suggest phenotipic changes as possible biomarkers of SLE activity.


Subject(s)
Humans , Female , Flow Cytometry/methods , Lupus Erythematosus, Systemic/pathology , Patients/classification , Biomarkers/analysis , Natural Killer T-Cells
4.
Int J Mol Sci ; 23(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36361628

ABSTRACT

It is now widely accepted that NK cells can acquire memory, and this makes them more effective to protect against some pathogens. Prior reports indicate memory-like NK cells (mlNKs) in murine model of Mycobacterium tuberculosis (Mtb) as well as in healthy individuals with latent TB infection (LTBI). The increased expression of CD226 was evident in mlNKs from LTBI+ people after stimulation with γ-irradiated Mtb (γ-Mtb). We thus evaluated the contribution of costimulatory CD226 signaling in the functionality of mlNKs in LTBI+ people. We found that blockade of CD226 signaling using the antibody- or CRISPR/Cas9-mediated deletion of the CD226 gene in NK cells diminished the proliferation of mlNKs from LTBI+ people. Blocking CD226 signaling also reduced the phosphorylation of FOXO1 and cMyc expression. Additionally, cMyc inhibition using a chemical inhibitor reduced proliferation by mlNKs from LTBI+ people. Moreover, blocking CD226 signaling reduced glycolysis in NK cells, and the inhibition of glycolysis led to reduced effector function of mlNKs from LTBI+ people. Overall, our results provide a role for CD226 signaling in mlNK responses to Mtb.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Humans , Mice , Animals , Latent Tuberculosis/microbiology , Killer Cells, Natural , Signal Transduction , Cell Proliferation
5.
iScience ; 25(8): 104799, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35982796

ABSTRACT

Histone deacetylases (HDACs) are critical immune regulators. However, their roles in interleukin-1ß (IL-1ß) production remain unclear. By screening 11 zinc-dependent HDACs with chemical inhibitors, we found that HDAC1 inhibitor, 4-(dimethylamino)-N-[6-(hydroxyamino)-6-oxohexyl]-benzamide (DHOB), enhanced IL-1ß production by macrophage and dendritic cells upon TLR4 stimulation or Mycobacterium tuberculosis infection through IL-1ß maturation via elevated NLRP3 expression, increased cleaved caspase-1, and enhanced ASC oligomerization. DHOB rescued defective IL-1ß production by dendritic cells infected with M. tuberculosis with ESAT-6 deletion, a virulence factor shown to activate NLRP3 inflammasome. DHOB increased IL-1ß production and NLRP3 expression in a tuberculosis mouse model. Although DHOB inhibited HDAC activities of both HDAC1 and HDAC2 by direct binding, knockdown of HDAC2, but not HDAC1, increased IL-1ß production and NLRP3 expression in M. tuberculosis-infected macrophages. These data suggest that HDAC2, but not HDAC1, controls IL-1ß production through NLRP3 inflammasome activation, a mechanism with a significance in chronic inflammatory diseases including tuberculosis.

6.
J Diabetes Res ; 2018: 9685205, 2018.
Article in English | MEDLINE | ID: mdl-29862304

ABSTRACT

Acute or chronic exposure to diabetes-related stressors triggers a specific psychological and behavior stress syndrome called diabetes distress, which underlies depressive symptoms in most diabetic patients. Distressed and/or depressive diabetic adults exhibit higher rates of cardiovascular mortality and morbidity, which have been correlated to macrovascular complications evoked by diabetic behavior stress. Recent experimental findings clearly point out that oxidative stress accounts for the vascular dysfunction initiated by the exposure to life stressors in diabetic conditions. Moreover, oxidative stress has been described as the main autocrine and paracrine mechanism of cardiovascular damage induced by endothelial microparticles (anuclear ectosomal microvesicles released from injured endothelial cells) in diabetic subjects. Such robust relationship between oxidative stress and cardiovascular diseases strongly suggests a critical role for endothelial microparticles as the primer messengers of the redox-dependent vascular dysfunction underlying diabetes distress. Here, we provide novel perspectives opened in the view of endothelial microparticles as promising diagnostic and pharmacotherapeutic biomarkers of cardiovascular risk in distressed diabetic patients.


Subject(s)
Cardiovascular Diseases/diagnosis , Cell-Derived Microparticles/metabolism , Diabetes Complications/metabolism , Endothelium, Vascular/metabolism , Oxidative Stress/physiology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Humans , Risk Factors
7.
Curr Radiopharm ; 10(1): 16-20, 2017.
Article in English | MEDLINE | ID: mdl-28183248

ABSTRACT

One of the cornerstones of rational drug development is the measurement of molecular parameters derived from ligand-receptor interaction, which guides therapeutic windows definition. Over the last decades, radioligand binding has provided valuable contributions in this field as key method for such purposes. However, its limitations spurred the development of more exquisite techniques for determining such parameters. For instance, safety risks related to radioactivity waste, expensive and controlled disposal of radioisotopes, radiotracer separation-dependence for affinity analysis, and one-site mathematical models-based fitting of data make radioligand binding a suboptimal approach in providing measures of actual affinity conformations from ligands and G proteincoupled receptors (GPCR). Current advances on high-throughput screening (HTS) assays have markedly extended the options of sparing sensitive ways for monitoring ligand affinity. The advent of the novel bioluminescent donor NanoLuc luciferase (Nluc), engineered from Oplophorus gracilirostris luciferase, allowed fitting bioluminescence resonance energy transfer (BRET) for monitoring ligand binding. Such novel approach named Nluc-based BRET (NanoBRET) binding assay consists of a real-time homogeneous proximity assay that overcomes radioligand binding limitations but ensures the quality in affinity measurements. Here, we cover the main advantages of NanoBRET protocol and the undesirable drawbacks of radioligand binding as molecular methods that span pharmacological toolbox applied to Drug Discovery. Also, we provide a novel perspective for the application of NanoBRET technology in affinity assays for multiple-state binding mechanisms involving oligomerization and/or functional biased selectivity. This new angle was proposed based on specific biophysical criteria required for the real-time homogeneity assigned to the proximity NanoBRET protocol.


Subject(s)
Drug Discovery/trends , Fluorescence Resonance Energy Transfer/methods , Pharmacology/trends , Radioligand Assay , Ligands , Luciferases/metabolism , Luminescent Measurements/methods , Protein Binding , Radioisotopes/pharmacology , Radioligand Assay/methods , Receptors, G-Protein-Coupled/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...