Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Arq. bras. endocrinol. metab ; 56(8): 574-577, Nov. 2012. ilus
Article in English | LILACS | ID: lil-660269

ABSTRACT

Maternally-inherited diabetes with deafness (MIDD) is a rare form of monogenic diabetes that results, in most cases, from an A-to-G transition at position 3243 of mitochondrial DNA (m.3243A>G) in the mitochondrial-encoded tRNA leucine (UUA/G) gene. As the name suggests, this condition is characterized by maternally-inherited diabetes and bilateral neurosensory hearing impairment. A characteristic of mitochondrial cytopathies is the progressive multisystemic involvement with the development of more symptoms during the course of the disease. We report here the case of a patient with MIDD who developed hyporeninemic hypoaldosteronism. Arq Bras Endocrinol Metab. 2012;56(8):574-7.


O diabetes mitocondrial (MIDD) é uma forma rara de diabetes monogênico resultante, na maioria dos casos, da mutação mitocondrial A3243G. Essa condição é caracterizada por diabetes de transmissão materna e disacusia neurossensorial. Uma característica das mitocondriopatias é o envolvimento progressivo de outros órgãos ou sistemas, levando ao aparecimento de diversos sintomas durante o curso da doença. Este relato descreve o caso de um paciente com MIDD que, durante o período de acompanhamento, apresentou hipoaldosteronismo hiporreninêmico. Arq Bras Endocrinol Metab. 2012;56(8):574-7.


Subject(s)
Humans , Male , Middle Aged , DNA, Mitochondrial/genetics , Deafness/genetics , /genetics , Hypoaldosteronism/genetics , Point Mutation/genetics , Pedigree
3.
Diabetol Metab Syndr ; 4(1): 40, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-22938045

ABSTRACT

BACKGROUND: Familial partial lipodystrophies (FPLD) are clinically heterogeneous disorders characterized by selective loss of adipose tissue, insulin resistance and metabolic complications. Until genetic studies become available for clinical practice, clinical suspicion and pattern of fat loss are the only parameters leading clinicians to consider the diagnosis. The objective of this study was to compare body composition by dual energy X-ray absorptiometry (DXA) in patients with FPLD and control subjects, aiming to find objective variables for evaluation of FPLD. METHODS: Eighteen female patients with partial lipodystrophy phenotype and 16 healthy controls, matched for body mass index, sex and age were studied. All participants had body fat distribution evaluated by DXA measures. Fasting blood samples were obtained for evaluation of plasma leptin, lipid profile and inflammatory markers. Genetic studies were carried out on the 18 patients selected that were included for statistical analysis. Thirteen women confirmed diagnosis of Dunnigan-type FPLD (FPLD2). RESULTS: DXA revealed a marked decrease in truncal fat and 3 folds decrease in limbs fat percentage in FPLD2 patients (p <0.001). Comparative analysis showed that ratio between trunk and lower limbs fat mass, characterized as Fat Mass Ratio (FMR), had a greater value in FLPD2 group (1.86 ± 0.43 vs controls 0.93 ± 0.10; p <0.001) and a improved accuracy for evaluating FPLD2 with a cut-off point of 1.2. Furthermore, affected women showed hypoleptinemia (FLPD2 4.9 ± 2.0 vs controls 18.2 ± 6.8; p <0.001), insulin resistance and a more aggressive lipid profile. CONCLUSION: In this study, assessment of body fat distribution by DXA permitted an objective characterization of FLPD2. A consistent pattern with marked fat reduction of lower body was observed in affected patients. To our knowledge this is the first time that cut-off values of objective variables were proposed for evaluation of FPLD2.

4.
Eur J Endocrinol ; 167(3): 423-31, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22700598

ABSTRACT

OBJECTIVE: Mutations in LMNA have been linked to diverse disorders called laminopathies, which display heterogeneous phenotypes and include diseases affecting muscles, axonal neurons, progeroid syndromes, and lipodystrophies. Among the lipodystrophies, LMNA mutations have been reported most frequently in patients with familial partial lipodystrophy (FPLD) of the Dunnigan variety; however, phenotypic heterogeneity in the pattern of body fat loss has been observed. In this study, we searched for LMNA mutations in patients with various forms of lipodystrophy. DESIGN AND METHODS: We studied 21 unrelated individuals with lipodystrophy. Subjects underwent a complete clinical evaluation and were classified as typical FPLD (n=12), atypical partial lipodystrophy (n=7), or generalized lipodystrophy (n=2). Molecular analysis of LMNA gene, analysis of body fat by dual-energy X-ray absorptiometry, and biochemical measurements were performed. RESULTS: ALL PATIENTS WITH TYPICAL FPLD WERE FOUND TO CARRY LMNA MUTATIONS: seven patients harbored the heterozygous p.R482W (c.1444C>T), two patients harbored the p.R482Q (c.1445G>A), and two individuals harbored the novel heterozygous variant p.N466D (c.1396A>G), all in exon 8. Also, a homozygous p.R584H (c.1751 G>A) mutation in exon 11 was found. Among patients with atypical partial lipodystrophy, two of them were found to have LMNA mutations: a novel heterozygous p.R582C variation (c.1744 C>T) in exon 11 and a heterozygous substitution p.R349W (c.1045C>T) in exon 6. Among patients with generalized lipodystrophy, only one harbored LMNA mutation, a heterozygous p.T10I (c.29C>T) in exon 1. CONCLUSIONS: We have identified LMNA mutations in phenotypically diverse lipodystrophies. Also, our study broadens the spectrum of LMNA mutations in lipodystrophy.


Subject(s)
Genetic Variation/genetics , Lamin Type A/genetics , Lipodystrophy/diagnosis , Lipodystrophy/genetics , Mutation/genetics , Phenotype , Adipose Tissue/physiology , Adolescent , Adult , Humans , Middle Aged , Pedigree , Young Adult
5.
Arq Bras Endocrinol Metabol ; 56(8): 574-7, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23295301

ABSTRACT

Maternally-inherited diabetes with deafness (MIDD) is a rare form of monogenic diabetes that results, in most cases, from an A-to-G transition at position 3243 of mitochondrial DNA (m.3243A>G) in the mitochondrial-encoded tRNA leucine (UUA/G) gene. As the name suggests, this condition is characterized by maternally-inherited diabetes and bilateral neurosensory hearing impairment. A characteristic of mitochondrial cytopathies is the progressive multisystemic involvement with the development of more symptoms during the course of the disease. We report here the case of a patient with MIDD who developed hyporeninemic hypoaldosteronism.


Subject(s)
DNA, Mitochondrial/genetics , Deafness/genetics , Diabetes Mellitus, Type 2/genetics , Hypoaldosteronism/genetics , Point Mutation/genetics , Humans , Male , Middle Aged , Mitochondrial Diseases , Pedigree
6.
Obesity (Silver Spring) ; 20(2): 440-3, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22095113

ABSTRACT

BMI is a widely used method to evaluate adiposity. However, it has several limitations, particularly an inability to differentiate lean from fat mass. A new method, body adiposity index (BAI), has been recently proposed as a new measurement capable to determine fat excess better than BMI. The aim of this study was to investigate BAI as a mean to evaluate adiposity in a group of women with familial partial lipodystrophy (FPLD) and compare it with BMI. Thirteen women with FLPD Dunnigan type (FPLD2) and 13 healthy volunteers matched by age and BMI were studied. Body fat content and distribution were analyzed by dual X-ray absorptiometry (DXA). Plasma leptin was also measured. BAI was significantly lower in FPLD2 in comparison to control group (24.6 ± 1.5 vs. 30.4 ± 4.3; P < 0.001) and presented a more significant correlation with total fat (%) (r = 0.71; P < 0.001) and fat Mass (g) (r = 0.80; P < 0.001) than BMI (r = 0.27; P = 0.17 for total fat and r = 0.52; P = 0.006 for fat mass). There was a correlation between leptin and BAI (r = 0.57; P = 0.01), [corrected] but not between leptin and BMI. In conclusion, BAI was able to catch differences in adiposity in a sample of FPLD2 patients. It also correlated better with leptin levels than BMI. Therefore, we provide further evidence that BAI may become a more reliable indicator of fat mass content than the currently available measurements.


Subject(s)
Absorptiometry, Photon/methods , Body Mass Index , Diabetes Mellitus, Type 2/blood , Leptin/blood , Lipodystrophy, Familial Partial/blood , Adipose Tissue , Adiposity , Adult , Body Composition , Brazil/epidemiology , Diabetes Mellitus, Type 2/diagnostic imaging , Diabetes Mellitus, Type 2/epidemiology , Female , Humans , Lipodystrophy, Familial Partial/diagnostic imaging , Lipodystrophy, Familial Partial/epidemiology , Reproducibility of Results
7.
Clin Biochem ; 42(10-11): 1183-6, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19303000

ABSTRACT

OBJECTIVE: To determine Retinol Binding Protein 4 (RBP4) levels in patients with Familial Partial Lipodystrophy (FPLD). METHODS: Ten patients with FPLD and a control group (9 patients) were selected to participate in the study. RESULTS: RBP4-log levels were lower in patients with FPLD in comparison to control group (1.52 +/- 0.32 vs 1.84+/-0.25, p=0.029). A statistical trend was observed between Waist-to-Hip Ratio and RBP4-log (r=-0.44, p=0.054). CONCLUSION: RBP4 levels are decreased in FPLD.


Subject(s)
Lipodystrophy, Familial Partial/blood , Retinol-Binding Proteins, Plasma/metabolism , Adult , Case-Control Studies , Female , Humans , Waist-Hip Ratio
8.
Arq. bras. endocrinol. metab ; 52(8): 1252-1256, Nov. 2008. ilus, tab
Article in English | LILACS | ID: lil-503290

ABSTRACT

Lipodystrophies are a group of heterogeneous disorders characterized by the loss of adipose tissue and metabolic complications. The main familial forms of lipodystrophy are Congenital Generalized Lipodystrophy and Familial Partial Lipodystrophy (FPLD). FPLD may result from mutations in the LMNA gene. Besides FPLD, mutations in LMNA have been shown to be responsible for other inherited diseases called laminopathies. Here we describe the case of a 15-year-old girl who was referred to our service due to diabetes mellitus and severe hypertriglyceridemia. Physical examination revealed generalized loss of subcutaneous fat, confirmed by DEXA (total body fat 8.6 percent). As the patient presented with pubertal-onset of generalized lipodystrophy and insulin resistance, molecular analysis of the LMNA gene was performed. We identified a heterozygous substitution in exon 1 (c.29C>T) predicting a p.T10I mutation. In summary, we describe an atypical phenotype of lipodistrophy associated with a de novo appearance of the p.T10I mutation in LMNA gene.


As lipodistrofias são um grupo heterogêneo de doenças caracterizadas por perda de tecido adiposo e complicações metabólicas. As formas hereditárias mais importantes de lipodistrofias são: lipodistrofia congênita generalizada e lipodistrofia parcial familiar (LDPF). LDPF resulta de mutações no gene LMNA que codificam as lâminas tipo A. Além da LDPF, mutações no gene LMNA são responsáveis por outras doenças hereditárias, denominadas laminopatias. Descrevemos o caso de uma paciente de 15 anos de idade encaminhada por diabetes melito e hipertrigliceridemia grave. Ao exame físico, apresentava perda generalizada de gordura subcutânea que foi confirmada por DEXA (gordura corporal total 8,6 por cento). Como a paciente apresentava perda de gordura de início na puberdade e resistência insulínica, foi realizada análise molecular do gene LMNA. Identificamos uma substituição em heterozigose no éxon 1 (c.29C>T), resultando na mutação p.T10I. Em sumário, um caso de fenótipo atípico de lipodistrofia generalizada devido à mutação de novo p.T10I no gene LMNA é descrito.


Subject(s)
Adolescent , Female , Humans , Insulin Resistance/genetics , Lamin Type A/genetics , Lipodystrophy/genetics , Mutation/genetics , Amino Acid Sequence , Heterozygote , Lipodystrophy, Congenital Generalized , Lipodystrophy/classification , Lipodystrophy/pathology , Phenotype
9.
Arq Bras Endocrinol Metabol ; 52(8): 1252-6, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19169477

ABSTRACT

Lipodystrophies are a group of heterogeneous disorders characterized by the loss of adipose tissue and metabolic complications. The main familial forms of lipodystrophy are Congenital Generalized Lipodystrophy and Familial Partial Lipodystrophy (FPLD). FPLD may result from mutations in the LMNA gene. Besides FPLD, mutations in LMNA have been shown to be responsible for other inherited diseases called laminopathies. Here we describe the case of a 15-year-old girl who was referred to our service due to diabetes mellitus and severe hypertriglyceridemia. Physical examination revealed generalized loss of subcutaneous fat, confirmed by DEXA (total body fat 8.6%). As the patient presented with pubertal-onset of generalized lipodystrophy and insulin resistance, molecular analysis of the LMNA gene was performed. We identified a heterozygous substitution in exon 1 (c.29C>T) predicting a p.T10I mutation. In summary, we describe an atypical phenotype of lipodistrophy associated with a de novo appearance of the p.T10I mutation in LMNA gene.


Subject(s)
Insulin Resistance/genetics , Lamin Type A/genetics , Lipodystrophy/genetics , Mutation/genetics , Adolescent , Amino Acid Sequence , Female , Heterozygote , Humans , Lipodystrophy/classification , Lipodystrophy/pathology , Lipodystrophy, Congenital Generalized , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...