Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Front Microbiol ; 10: 497, 2019.
Article in English | MEDLINE | ID: mdl-30967845

ABSTRACT

Arenization occurs in regions that present sandy soils with normal rainfall levels. Predatory use of environmental sources, the dissolution of arenitic rocks and reworking of non-consolidated surface sands intensify this degradation scenario. Thus, this work aimed to evaluate the impact of the arenization process in the Brazilian Pampa Biome and how this phenomenon affects the soil microbial and plant communities. For this purpose, three arenized areas in Southern Brazil (Pampa Biome) were selected and, in each one, three sampling points were studied: arenized (ARA), arenized to grassland transition (AGT), and grassland (GRA) areas. In the three sampling points, soils presented low levels of nutrients, organic matter, mud and pH acidic in all regions but, the presence of vegetation coverage in AGT and GRA areas preserved the topsoil structure. Our study related ARA with bacterial families Alcaligenaceae, Pseudomonadaceae, and Xanthomonadaceae. AGT with bacterial families Bacillaceae and Burkholderiaceae, and plant species Melinis repens (Willd.) Zizka and Paspalum stellatum Humb. and Bonpl. ex Flüggé, and GRA with bacterial families Koribacteraceae, Hyphomicrobiaceae, and Chthoniobacteraceae, and plant species Croton subpannosus Müll.Arg. ex Griseb., Piptochaetium montevidense (Spreng.) Parodi and Elyonurus sp. The three studied areas (as well as sampling points) present soils extremely poor in nutrients with sandy texture, and the bacterial and plant composition well known to be resistant to environmental stresses were dominant. The vulnerability of these areas causes a degradation scenario, which is worsened by agricultural activities. However, in general, this phenomenon is a natural process that occurs mainly due to soil characteristics (poor soils) and climatic variations.

2.
Environ Microbiol Rep ; 9(2): 85-90, 2017 04.
Article in English | MEDLINE | ID: mdl-27886654

ABSTRACT

Microorganisms are constantly challenged by stressful conditions, such as sugar-rich environments. Such environments can cause an imbalance of biochemical activities and compromise cell multiplication. Gluconacetobacter diazotrophicus PAl 5 is among the most sugar-tolerant bacteria, capable of growing in the presence of up to 876 mM sucrose. However, the molecular mechanisms involved in its response to high sucrose remain unknown. The present work aimed to identify sucrose-induced stress resistance genes in G. diazotrophicus PAl 5. Screening of a Tn5 transposon insertion library identified a mutant that was severely compromised in its resistance to high sucrose concentrations. Molecular characterization revealed that the mutation affected the kupA gene, which encodes a K+ uptake transporter (KupA). Functional complementation of the mutant with the wild type kupA gene recovered the sucrose-induced stress resistance phenotype. High sucrose resistance assay, under different potassium concentrations, revealed that KupA acts as a high-affinity K+ transporter, which is essential for resistance to sucrose-induced stress, when extracellular potassium levels are low. This study is the first to show the essential role of the KupA protein for resistance to sucrose-induced stress in bacteria by acting as a high-affinity potassium transporter in G. diazotrophicus PAl 5.


Subject(s)
Gluconacetobacter/drug effects , Gluconacetobacter/physiology , Membrane Transport Proteins/metabolism , Osmotic Pressure , Potassium/metabolism , Stress, Physiological , Sucrose/metabolism , DNA Transposable Elements , Genetic Complementation Test , Gluconacetobacter/genetics , Mutagenesis, Insertional
3.
Int. microbiol ; 15(2): 69-78, jun. 2012. ilus, tab
Article in English | IBECS | ID: ibc-102995

ABSTRACT

The mechanisms of cadmium, cobalt and zinc resistance were characterized in the plant-growth-promoting bacterium Gluconacetobacter diazotrophicus PAl 5. The resistance level of the wild-type strain was evaluated through the establishment of minimum inhibitory concentrations (MIC) of the soluble compounds CdCl2·H2O, CoCl2·6H2O and ZnCl2. Gluconacetobacter diazotrophicus PAl 5 was resistant to high concentrations of Cd, Co and Zn, with MICs of 1.2, 20 and 20 mM, respectively. Screening of an insertion library from transposon EZ-Tn5 in the presence of ZnO revealed that the mutant GDP30H3 was unable to grow in the presence of the compound. This mutant was also highly sensitive to CdCl2·H2O, CoCl26H2O and ZnCl2. Molecular characterization established that the mutation affected the czcA gene, which encodes a protein involved in metal efflux. In silico analysis showed that czcA is a component of the czcCBARS operon together with four other genes. This work provides evidence of the high tolerance of G. diazotrophicus PAl 5 to heavy metals and that czc is a determinant for metal resistance in this bacterium (AU)


No disponible


Subject(s)
Gluconacetobacter/growth & development , Metals, Heavy/pharmacokinetics , Cobalt , Zinc , Cadmium , DNA Transposable Elements
SELECTION OF CITATIONS
SEARCH DETAIL
...