Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
2.
Front Cell Infect Microbiol ; 11: 709972, 2021.
Article in English | MEDLINE | ID: mdl-34395315

ABSTRACT

Upon infection, Mycobacterium leprae, an obligate intracellular bacillus, induces accumulation of cholesterol-enriched lipid droplets (LDs) in Schwann cells (SCs). LDs are promptly recruited to M. leprae-containing phagosomes, and inhibition of this process decreases bacterial survival, suggesting that LD recruitment constitutes a mechanism by which host-derived lipids are delivered to intracellular M. leprae. We previously demonstrated that M. leprae has preserved only the capacity to oxidize cholesterol to cholestenone, the first step of the normal cholesterol catabolic pathway. In this study we investigated the biochemical relevance of cholesterol oxidation on bacterial pathogenesis in SCs. Firstly, we showed that M. leprae increases the uptake of LDL-cholesterol by infected SCs. Moreover, fluorescence microscopy analysis revealed a close association between M. leprae and the internalized LDL-cholesterol within the host cell. By using Mycobacterium smegmatis mutant strains complemented with M. leprae genes, we demonstrated that ml1942 coding for 3ß-hydroxysteroid dehydrogenase (3ß-HSD), but not ml0389 originally annotated as cholesterol oxidase (ChoD), was responsible for the cholesterol oxidation activity detected in M. leprae. The 3ß-HSD activity generates the electron donors NADH and NADPH that, respectively, fuel the M. leprae respiratory chain and provide reductive power for the biosynthesis of the dominant bacterial cell wall lipids phthiocerol dimycocerosate (PDIM) and phenolic glycolipid (PGL)-I. Inhibition of M. leprae 3ß-HSD activity with the 17ß-[N-(2,5-di-t-butylphenyl)carbamoyl]-6-azaandrost-4-en-3one (compound 1), decreased bacterial intracellular survival in SCs. In conclusion, our findings confirm the accumulation of cholesterol in infected SCs and its potential delivery to the intracellular bacterium. Furthermore, we provide strong evidence that cholesterol oxidation is an essential catabolic pathway for M. leprae pathogenicity and point to 3ß-HSD as a prime drug target that may be used in combination with current multidrug regimens to shorten leprosy treatment and ameliorate nerve damage.


Subject(s)
Leprosy , Mycobacterium leprae , Adenosine Triphosphate , Cholesterol , Humans , Lipids
3.
s.l; s.n; 2021. 14 p. tab, graf.
Non-conventional in English | Sec. Est. Saúde SP, HANSEN, CONASS, Hanseníase Leprosy, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1293071

ABSTRACT

Upon infection, Mycobacterium leprae, an obligate intracellular bacillus, induces accumulation of cholesterol-enriched lipid droplets (LDs) in Schwann cells (SCs). LDs are promptly recruited to M. leprae-containing phagosomes, and inhibition of this process decreases bacterial survival, suggesting that LD recruitment constitutes a mechanism by which host-derived lipids are delivered to intracellular M. leprae. We previously demonstrated that M. leprae has preserved only the capacity to oxidize cholesterol to cholestenone, the first step of the normal cholesterol catabolic pathway. In this study we investigated the biochemical relevance of cholesterol oxidation on bacterial pathogenesis in SCs. Firstly, we showed that M. leprae increases the uptake of LDL-cholesterol by infected SCs. Moreover, fluorescence microscopy analysis revealed a close association between M. leprae and the internalized LDL-cholesterol within the host cell. By using Mycobacterium smegmatis mutant strains complemented with M. leprae genes, we demonstrated that ml1942 coding for 3ß-hydroxysteroid dehydrogenase (3ß-HSD), but not ml0389 originally annotated as cholesterol oxidase (ChoD), was responsible for the cholesterol oxidation activity detected in M. leprae. The 3ß-HSD activity generates the electron donors NADH and NADPH that, respectively, fuel the M. leprae respiratory chain and provide reductive power for the biosynthesis of the dominant bacterial cell wall lipids phthiocerol dimycocerosate (PDIM) and phenolic glycolipid (PGL)-I. Inhibition of M. leprae 3ß-HSD activity with the 17ß-[N-(2,5-di-t-butylphenyl)carbamoyl]-6-azaandrost-4-en-3one (compound 1), decreased bacterial intracellular survival in SCs. In conclusion, our findings confirm the accumulation of cholesterol in infected SCs and its potential delivery to the intracellular bacterium. Furthermore, we provide strong evidence that cholesterol oxidation is an essential catabolic pathway for M. leprae pathogenicity and point to 3ß-HSD as a prime drug target that may be used in combination with current multidrug regimens to shorten leprosy treatment and ameliorate nerve damage.


Subject(s)
Humans , Leprosy , Mycobacterium leprae , Adenosine Triphosphate , Cholesterol , Lipids
4.
PLoS Negl Trop Dis ; 14(3): e0008138, 2020 03.
Article in English | MEDLINE | ID: mdl-32226013

ABSTRACT

The changes in host lipid metabolism during leprosy have been correlated to fatty acid alterations in serum and with high-density lipoprotein (HDL) dysfunctionality. This is most evident in multibacillary leprosy patients (Mb), who present an accumulation of host lipids in Schwann cells and macrophages. This accumulation in host peripheral tissues should be withdrawn by HDL, but it is unclear why this lipoprotein from Mb patients loses this function. To investigate HDL metabolism changes during the course of leprosy, HDL composition and functionality of Mb, Pb patients (paucibacillary) pre- or post-multidrug therapy (MDT) and HC (healthy controls) were analyzed. Mb pre-MDT patients presented lower levels of HDL-cholesterol compared to HC. Moreover, Ultra Performance Liquid Chromatography-Mass Spectrometry lipidomics of HDL showed an altered lipid profile of Mb pre-MDT compared to HC and Pb patients. In functional tests, HDL from Mb pre-MDT patients showed impaired anti-inflammatory and anti-oxidative stress activities and a lower cholesterol acceptor capacity compared to other groups. Mb pre-MDT showed lower concentrations of ApoA-I (apolipoprotein A-I), the major HDL protein, when compared to HC, with a post-MDT recovery. Changes in ApoA-I expression could also be observed in M. leprae-infected hepatic cells. The presence of bacilli in the liver of a Mb patient, along with cell damage, indicated hepatic involvement during leprosy, which may reflect on ApoA-I expression. Together, altered compositional and functional profiles observed on HDL of Mb patients can explain metabolic and physiological changes observed in Mb leprosy, contributing to a better understanding of its pathogenesis.


Subject(s)
Leprosy/pathology , Lipoproteins, HDL/blood , Adolescent , Adult , Aged , Chromatography, High Pressure Liquid , Female , Humans , Leprostatic Agents/therapeutic use , Leprosy/drug therapy , Male , Mass Spectrometry , Middle Aged , Plasma/chemistry , Young Adult
6.
J Immunol ; 197(5): 1905-13, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27474073

ABSTRACT

The chronic course of lepromatous leprosy may be interrupted by acute inflammatory episodes known as erythema nodosum leprosum (ENL). Despite its being a major cause of peripheral nerve damage in leprosy patients, the immunopathogenesis of ENL remains ill-defined. Recognized by distinct families of germline-encoded pattern recognition receptors, endogenous and pathogen-derived nucleic acids are highly immunostimulatory molecules that play a major role in the host defense against infections, autoimmunity, and autoinflammation. The aim of this work was to investigate whether DNA sensing via TLR-9 constitutes a major inflammatory pathway during ENL. Flow cytometry and immunohistochemistry analysis showed significantly higher TLR-9 expression in ENL when compared with nonreactional lepromatous patients, both locally in the skin lesions and in circulating mononuclear cells. The levels of endogenous and pathogen-derived TLR-9 ligands in the circulation of ENL patients were also higher. Furthermore, PBMCs isolated from the ENL patients secreted higher levels of TNF, IL-6, and IL-1ß in response to a TLR-9 agonist than those of the nonreactional patients and healthy individuals. Finally, E6446, a TLR-9 synthetic antagonist, was able to significantly inhibit the secretion of proinflammatory cytokines by ENL PBMCs in response to Mycobacterium leprae lysate. Our data strongly indicate that DNA sensing via TLR-9 constitutes a major innate immunity pathway involved in the pathogenesis and evolution of ENL. Thus, the use of TLR-9 antagonists emerges as a potential alternative to more effectively treat ENL aiming to prevent the development of nerve injuries and deformities in leprosy.


Subject(s)
DNA/metabolism , Erythema Nodosum/immunology , Immunity, Innate , Leprosy, Lepromatous/immunology , Signal Transduction , Toll-Like Receptor 9/metabolism , Adult , Aged , Aged, 80 and over , Erythema Nodosum/microbiology , Female , Flow Cytometry , Humans , Leprosy, Lepromatous/microbiology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/microbiology , Male , Middle Aged , Mycobacterium leprae/chemistry , Mycobacterium leprae/immunology , Toll-Like Receptor 9/immunology , Young Adult
7.
J Mass Spectrom ; 50(12): 1374-85, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26634971

ABSTRACT

Leprosy still represents a health problem in several countries. Affecting skin and peripheral nerves, it may lead to permanent disabilities. Disturbances on skin lipid metabolism in leprosy were already observed; however, the localization and distribution of lipids could not be accessed. The role of lipids on infectious disease has been fully addressed only recently, as they directly influence immune response. Matrix-assisted laser desorption/ionization imaging mass spectrometry provides a powerful tool to localize and identify lipids in tissues. The aim of this work was to study and compare the changes in lipid distribution of skin biopsies taken from leprosy patients before and after multidrug therapy (MDT). Different species of phosphatidic acid, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin and phosphatidylcholine were detected. Differences in skin lipid signal intensities, as well as in their localization, were observed before and after MDT in every patient. In general, lipid distribution in the skin after MDT had a pattern similar to control skin samples, where most of the lipids were located in the upper part of the dermis and epidermis. This study opens paths to a better understanding of lipid functions in leprosy pathogenesis and immune response.

8.
J Transl Med ; 13: 296, 2015 Sep 11.
Article in English | MEDLINE | ID: mdl-26362198

ABSTRACT

BACKGROUND: Peripheral nerve injury and bone lesions, well known leprosy complications, lead to deformities and incapacities. The phosphate-regulating gene with homologies to endopeptidase on the X chromosome (PHEX) encodes a homonymous protein (PHEX) implicated in bone metabolism. PHEX/PHEX alterations may result in bone and cartilage lesions. PHEX expression is downregulated by intracellular Mycobacterium leprae (M. leprae) in cultures of human Schwann cells and osteoblasts. M. leprae in vivo effect on PHEX/PHEX is not known. METHODS: Cross-sectional observational study of 36 leprosy patients (22 lepromatous and 14 borderline-tuberculoid) and 20 healthy volunteers (HV). The following tests were performed: PHEX flow cytometric analysis on blood mononuclear cells, cytokine production in culture supernatant, 25-hydroxyvitamin D (OHvitD) serum levels and (99m)Tc-MDP three-phase bone scintigraphy, radiography of upper and lower extremities and blood and urine biochemistry. RESULTS: Significantly lower PHEX expression levels were observed in lepromatous patients than in the other groups (χ(2) = 16.554, p < 0.001 for lymphocytes and χ(2) = 13.933, p = 0.001 for monocytes). Low levels of 25-(OHvitD) were observed in HV (median = 23.0 ng/mL) and BT patients (median = 27.5 ng/mL) and normal serum levels were found in LL patients (median = 38.6 ng/mL). Inflammatory cytokines, such as TNF, a PHEX transcription repressor, were lower after stimulation with M. leprae in peripheral blood mononuclear cells from lepromatous in comparison to BT patients and HV (χ(2) = 10.820, p < 0.001). CONCLUSION: Downregulation of PHEX may constitute an important early component of bone loss and joint damage in leprosy. The present results suggest a direct effect produced by M. leprae on the osteoarticular system that may use this mechanism.


Subject(s)
Down-Regulation , Leprosy, Borderline/metabolism , Leprosy, Multibacillary/metabolism , PHEX Phosphate Regulating Neutral Endopeptidase/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Bone and Bones/microbiology , Cartilage/microbiology , Cross-Sectional Studies , Cytokines/metabolism , Female , Flow Cytometry , Healthy Volunteers , Humans , Inflammation/metabolism , Inflammation/microbiology , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Osteoblasts/microbiology , Schwann Cells/microbiology , Technetium Tc 99m Medronate , Young Adult
9.
J Bacteriol ; 197(23): 3698-707, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26391209

ABSTRACT

UNLABELLED: Mycobacterium leprae induces the formation of lipid droplets, which are recruited to pathogen-containing phagosomes in infected macrophages and Schwann cells. Cholesterol is among the lipids with increased abundance in M. leprae-infected cells, and intracellular survival relies on cholesterol accumulation. The present study investigated the capacity of M. leprae to acquire and metabolize cholesterol. In silico analyses showed that oxidation of cholesterol to cholest-4-en-3-one (cholestenone), the first step of cholesterol degradation catalyzed by the enzyme 3ß-hydroxysteroid dehydrogenase (3ß-HSD), is apparently the only portion of the cholesterol catabolic pathway seen in Mycobacterium tuberculosis preserved by M. leprae. Incubation of bacteria with radiolabeled cholesterol confirmed the in silico predictions. Radiorespirometry and lipid analyses performed after incubating M. leprae with [4-(14)C]cholesterol or [26-(14)C]cholesterol showed the inability of this pathogen to metabolize the sterol rings or the side chain of cholesterol as a source of energy and carbon. However, the bacteria avidly incorporated cholesterol and, as expected, converted it to cholestenone both in vitro and in vivo. Our data indicate that M. leprae has lost the capacity to degrade and utilize cholesterol as a nutritional source but retains the enzyme responsible for its oxidation to cholestenone. Thus, the essential role of cholesterol metabolism in the intracellular survival of M. leprae is uncoupled from central carbon metabolism and energy production. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies. IMPORTANCE: Our study focused on the obligate intracellular pathogen Mycobacterium leprae and its capacity to metabolize cholesterol. The data make an important contribution for those interested in understanding the mechanisms of mycobacterial pathogenesis, since they indicate that the essential role of cholesterol for M. leprae intracellular survival does not rely on its utilization as a nutritional source. Our findings reinforce the complexity of cholesterol's role in sustaining M. leprae infection. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies.


Subject(s)
Carbon/metabolism , Cholesterol/metabolism , Mycobacterium leprae/metabolism , Energy Metabolism , Humans , Leprosy/microbiology , Microbial Viability , Mycobacterium leprae/genetics , Mycobacterium leprae/growth & development
10.
Cell Microbiol ; 16(6): 797-815, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24552180

ABSTRACT

We recently showed that Mycobacterium leprae (ML) is able to induce lipid droplet formation in infected macrophages. We herein confirm that cholesterol (Cho) is one of the host lipid molecules that accumulate in ML-infected macrophages and investigate the effects of ML on cellular Cho metabolism responsible for its accumulation. The expression levels of LDL receptors (LDL-R, CD36, SRA-1, SR-B1, and LRP-1) and enzymes involved in Cho biosynthesis were investigated by qRT-PCR and/or Western blot and shown to be higher in lepromatous leprosy (LL) tissues when compared to borderline tuberculoid (BT) lesions. Moreover, higher levels of the active form of the sterol regulatory element-binding protein (SREBP) transcriptional factors, key regulators of the biosynthesis and uptake of cellular Cho, were found in LL skin biopsies. Functional in vitro assays confirmed the higher capacity of ML-infected macrophages to synthesize Cho and sequester exogenous LDL-Cho. Notably, Cho colocalized to ML-containing phagosomes, and Cho metabolism impairment, through either de novo synthesis inhibition by statins or depletion of exogenous Cho, decreased intracellular bacterial survival. These findings highlight the importance of metabolic integration between the host and bacteria to leprosy pathophysiology, opening new avenues for novel therapeutic strategies to leprosy.


Subject(s)
Cholesterol/metabolism , Host-Pathogen Interactions , Macrophages/microbiology , Microbial Viability , Mycobacterium leprae/physiology , Phagosomes/microbiology , Animals , Blotting, Western , Cells, Cultured , Gene Expression Profiling , Humans , Leprosy/drug therapy , Macrophages/metabolism , Mice, Inbred C57BL , Phagosomes/metabolism , Real-Time Polymerase Chain Reaction , Receptors, LDL/biosynthesis , Receptors, LDL/genetics , Sterol Regulatory Element Binding Proteins/biosynthesis , Sterol Regulatory Element Binding Proteins/genetics
11.
PLoS Negl Trop Dis ; 7(8): e2381, 2013.
Article in English | MEDLINE | ID: mdl-23967366

ABSTRACT

Despite considerable efforts over the last decades, our understanding of leprosy pathogenesis remains limited. The complex interplay between pathogens and hosts has profound effects on host metabolism. To explore the metabolic perturbations associated with leprosy, we analyzed the serum metabolome of leprosy patients. Samples collected from lepromatous and tuberculoid patients before and immediately after the conclusion of multidrug therapy (MDT) were subjected to high-throughput metabolic profiling. Our results show marked metabolic alterations during leprosy that subside at the conclusion of MDT. Pathways showing the highest modulation were related to polyunsaturated fatty acid (PUFA) metabolism, with emphasis on anti-inflammatory, pro-resolving omega-3 fatty acids. These results were confirmed by eicosanoid measurements through enzyme-linked immunoassays. Corroborating the repertoire of metabolites altered in sera, metabonomic analysis of skin specimens revealed alterations in the levels of lipids derived from lipase activity, including PUFAs, suggesting a high lipid turnover in highly-infected lesions. Our data suggest that omega-6 and omega-3, PUFA-derived, pro-resolving lipid mediators contribute to reduced tissue damage irrespectively of pathogen burden during leprosy disease. Our results demonstrate the utility of a comprehensive metabonomic approach for identifying potential contributors to disease pathology that may facilitate the development of more targeted treatments for leprosy and other inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/metabolism , Fatty Acids, Unsaturated/metabolism , Host-Parasite Interactions , Leprosy/immunology , Leprosy/pathology , Metabolome , Adolescent , Adult , Aged , Aged, 80 and over , Child , Female , Humans , Male , Middle Aged , Plasma/chemistry , Skin/chemistry , Skin/pathology , Young Adult
12.
J Immunol ; 187(5): 2548-58, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21813774

ABSTRACT

The mechanisms responsible for nerve injury in leprosy need further elucidation. We recently demonstrated that the foamy phenotype of Mycobacterium leprae-infected Schwann cells (SCs) observed in nerves of multibacillary patients results from the capacity of M. leprae to induce and recruit lipid droplets (LDs; also known as lipid bodies) to bacterial-containing phagosomes. In this study, we analyzed the parameters that govern LD biogenesis by M. leprae in SCs and how this contributes to the innate immune response elicited by M. leprae. Our observations indicated that LD formation requires the uptake of live bacteria and depends on host cell cytoskeleton rearrangement and vesicular trafficking. TLR6 deletion, but not TLR2, completely abolished the induction of LDs by M. leprae, as well as inhibited the bacterial uptake in SCs. M. leprae-induced LD biogenesis correlated with increased PGE(2) and IL-10 secretion, as well as reduced IL-12 and NO production in M. leprae-infected SCs. Analysis of nerves from lepromatous leprosy patients showed colocalization of M. leprae, LDs, and cyclooxygenase-2 in SCs, indicating that LDs are sites for PGE(2) synthesis in vivo. LD biogenesis Inhibition by the fatty acid synthase inhibitor C-75 abolished the effect of M. leprae on SC production of immunoinflammatory mediators and enhanced the mycobacterial-killing ability of SCs. Altogether, our data indicated a critical role for TLR6-dependent signaling in M. leprae-SC interactions, favoring phagocytosis and subsequent signaling for induction of LD biogenesis in infected cells. Moreover, our observations reinforced the role of LDs favoring mycobacterial survival and persistence in the nerve. These findings give further support to a critical role for LDs in M. leprae pathogenesis in the nerve.


Subject(s)
Leprosy/pathology , Schwann Cells/microbiology , Schwann Cells/pathology , Toll-Like Receptor 6/immunology , Animals , Humans , Immunohistochemistry , Inclusion Bodies/immunology , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Inflammation/immunology , Inflammation/microbiology , Inflammation/pathology , Leprosy/immunology , Lipid Metabolism/physiology , Lipids/immunology , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Mycobacterium leprae/immunology , Schwann Cells/immunology , Toll-Like Receptor 6/metabolism
13.
Cell Microbiol ; 13(2): 259-73, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20955239

ABSTRACT

The predilection of Mycobacterium leprae (ML) for Schwann cells (SCs) leads to peripheral neuropathy, a major concern in leprosy. Highly infected SCs in lepromatous leprosy nerves show a foamy, lipid-laden appearance; but the origin and nature of these lipids, as well as their role in leprosy, have remained unclear. The data presented show that ML has a pronounced effect on host-cell lipid homeostasis through regulation of lipid droplet (lipid bodies, LD) biogenesis and intracellular distribution. Electron microscopy and immunohistochemical analysis of lepromatous leprosy nerves for adipose differentiation-related protein expression, a classical LD marker, revealed accumulating LDs in close association to ML in infected SCs. The capacity of ML to induce LD formation was confirmed in in vitro studies with human SCs. Moreover, via confocal and live-cell analysis, it was found that LDs are promptly recruited to bacterial phagosomes and that this process depends on cytoskeletal reorganization and PI3K signalling. ML-induced LD biogenesis and recruitment were found to be independent of TLR2 bacterial sensing. Notably, LD recruitment impairment by cytoskeleton drugs decreased intracellular bacterial survival. Altogether, our data revealed SC lipid accumulation in ML-containing phagosomes, which may represent a fundamental aspect of bacterial pathogenesis in the nerve.


Subject(s)
Lipid Metabolism , Mycobacterium leprae/pathogenicity , Phagosomes/microbiology , Schwann Cells/microbiology , Cells, Cultured , Cytoplasm/chemistry , Cytoplasm/ultrastructure , Cytoskeleton/metabolism , Humans , Immunohistochemistry , Membrane Proteins/analysis , Microbial Viability , Microscopy , Mycobacterium leprae/metabolism , Perilipin-2 , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction
14.
Mem Inst Oswaldo Cruz ; 105(5): 627-32, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20835608

ABSTRACT

Neuropathy and bone deformities, lifelong sequelae of leprosy that persist after treatment, result in significant impairment to patients and compromise their social rehabilitation. Phosphate-regulating gene with homologies to endopeptidase on the X chromosome (PHEX) is a Zn-metalloendopeptidase, which is abundantly expressed in osteoblasts and many other cell types, such as Schwann cells, and has been implicated in phosphate metabolism and X-linked rickets. Here, we demonstrate that Mycobacterium leprae stimulation downregulates PHEX transcription and protein expression in a human schwannoma cell line (ST88-14) and human osteoblast lineage. Modulation of PHEX expression was observed to a lesser extent in cells stimulated with other species of mycobacteria, but was not observed in cultures treated with latex beads or with the facultative intracellular bacterium Salmonella typhimurium. Direct downregulation of PHEX by M. leprae could be involved in the bone resorption observed in leprosy patients. This is the first report to describe PHEX modulation by an infectious agent.


Subject(s)
Leprosy/metabolism , Mycobacterium leprae , Osteoblasts/enzymology , Schwann Cells/enzymology , Down-Regulation/genetics , Flow Cytometry , Gene Expression Regulation/genetics , Humans , Immunohistochemistry , Leprosy/genetics , Leprosy/pathology , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , PHEX Phosphate Regulating Neutral Endopeptidase/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic/genetics
15.
Mem. Inst. Oswaldo Cruz ; 105(5): 627-632, Aug. 2010. ilus, graf
Article in English | LILACS, Sec. Est. Saúde SP, HANSEN, Hanseníase Leprosy, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: lil-557221

ABSTRACT

Neuropathy and bone deformities, lifelong sequelae of leprosy that persist after treatment, result in significant impairment to patients and compromise their social rehabilitation. Phosphate-regulating gene with homologies to endopeptidase on the X chromosome (PHEX) is a Zn-metalloendopeptidase, which is abundantly expressed in osteoblasts and many other cell types, such as Schwann cells, and has been implicated in phosphate metabolism and X-linked rickets. Here, we demonstrate that Mycobacterium leprae stimulation downregulates PHEX transcription and protein expression in a human schwannoma cell line (ST88-14) and human osteoblast lineage. Modulation of PHEX expression was observed to a lesser extent in cells stimulated with other species of mycobacteria, but was not observed in cultures treated with latex beads or with the facultative intracellular bacterium Salmonella typhimurium. Direct downregulation of PHEX by M. leprae could be involved in the bone resorption observed in leprosy patients. This is the first report to describe PHEX modulation by an infectious agent.


Subject(s)
Humans , Leprosy , Mycobacterium leprae , Osteoblasts/enzymology , Schwann Cells/enzymology , Down-Regulation , Flow Cytometry , Gene Expression Regulation , Immunohistochemistry , Leprosy , Leprosy/pathology , PHEX Phosphate Regulating Neutral Endopeptidase , PHEX Phosphate Regulating Neutral Endopeptidase , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic
16.
J Leukoc Biol ; 87(3): 371-84, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19952355

ABSTRACT

A hallmark of LL is the accumulation of Virchow's foamy macrophages. However, the origin and nature of these lipids, as well as their function and contribution to leprosy disease, remain unclear. We herein show that macrophages present in LL dermal lesions are highly positive for ADRP, suggesting that their foamy aspect is at least in part derived from LD (also known as lipid bodies) accumulation induced during ML infection. Indeed, the capacity of ML to induce LD formation was confirmed in vivo via an experimental model of mouse pleurisy and in in vitro studies with human peripheral monocytes and murine peritoneal macrophages. Furthermore, infected cells were shown to propagate LD induction to uninfected, neighboring cells by generating a paracrine signal, for which TLR2 and TLR6 were demonstrated to be essential. However, TLR2 and TLR6 deletions affected LD formation in bacterium-bearing cells only partially, suggesting the involvement of alternative receptors of the innate immune response besides TLR2/6 for ML recognition by macrophages. Finally, a direct correlation between LD formation and PGE(2) production was observed, indicating that ML-induced LDs constitute intracellular sites for eicosanoid synthesis and that foamy cells may be critical regulators in subverting the immune response in leprosy.


Subject(s)
Eicosanoids/biosynthesis , Leprosy/metabolism , Leprosy/microbiology , Lipid Metabolism , Mycobacterium leprae/pathogenicity , Organelles/metabolism , Toll-Like Receptors/metabolism , Animals , Biopsy , Culture Media, Conditioned/pharmacology , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Dinoprostone/biosynthesis , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/microbiology , Leukocytes, Mononuclear/pathology , Lipid Metabolism/drug effects , Macrophage Activation/drug effects , Membrane Proteins/metabolism , Mice , Mycobacterium leprae/drug effects , Organelles/microbiology , Paracrine Communication/drug effects , Perilipin-2 , Phagocytosis/drug effects , Signal Transduction/drug effects , Skin/microbiology , Skin/pathology , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 6/metabolism
17.
J Peripher Nerv Syst ; 14(2): 84-92, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19691530

ABSTRACT

The mannose receptor (MR) is a transmembrane glycoprotein, postulated to be a link between innate and adaptive immunity. MR is expressed in several cell types but no information is available on that for Schwann cells (SC). We show that rodent SC in primary cultures take up the MR ligand mannosyl/bovine serum albumin-fluorescein isothiocyanate (man/BSA-FITC) in a highly specific manner and bind an antibody against the C-terminus of the murine macrophage MR (anti-cMR). After incubation with man/BSA-FITC, flow cytometry demonstrates 90% positive SC, a dose-dependent increase in tagged cellular components and near total inhibition of the neoglycoprotein uptake by D-mannose or by the mannosylated protein horseradish peroxidase (HRP). Western blot for MR shows that SC share a unique protein of about 180 kDa with peritoneal resident macrophages. Treatment of cultured SC with interferon-gamma (IFN-gamma) or dexamethasone (DM) followed by the addition of man/BSA-FITC and analysis by flow cytometry shows down- or upregulation, respectively, of man/BSA-FITC uptake. Our results show that SC express the MR in a prospectively functional state and suggest an antigen-presenting function of SC, compatible with a role in infectious/inflammatory states of the peripheral nervous system.


Subject(s)
Antigen Presentation , Histocompatibility Antigens Class II/metabolism , Lectins, C-Type/metabolism , Mannose-Binding Lectins/metabolism , Receptors, Cell Surface/metabolism , Schwann Cells/immunology , Schwann Cells/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Cells, Cultured , Dexamethasone/pharmacology , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/metabolism , Glycoproteins/metabolism , Histocompatibility Antigens Class II/immunology , Horseradish Peroxidase/metabolism , Interferon-gamma/pharmacology , Macrophages, Peritoneal/metabolism , Mannose/metabolism , Mannose Receptor , Mice , Rats , Rats, Wistar , Schwann Cells/drug effects , Serum Albumin, Bovine/metabolism
18.
Histol Histopathol ; 24(8): 1029-34, 2009 08.
Article in English | MEDLINE | ID: mdl-19554510

ABSTRACT

Complex carbohydrate structures are essential molecules of infectious microbes and host cells, and are involved in cell signaling associated with inflammatory and immune responses. The uptake of mannose-tailed glycans is usually carried out by macrophages, dendritic cells (DCs), and other professional phagocytes to trigger MHC class I- and MHC class II-restricted antigen presentation, and to promote T cell effector responses. Since Schwann cells (SCs) have been proposed as immunocompetent cells, we investigated whether a human cell line (ST88-14 cells) could bind mannosylated ligands in a specific manner. The saturation of uptake of mannosylated molecules by ST88-14 cells and the internalization and distribution pathway of these ligands were tested by cytometry and confocal plus electron microscopy, respectively. This uptake showed a dose-dependent increase, the saturation point being reached at high concentrations of mannosyl residues/240 mM mannose. Merging of man/BSA-FITC and S100 labeling showed their partial, but, significant colocalization. Ultrastructural analysis of ST88-14 cells after incubation with HRP-colloidal gold, without or with subsequent chasing at 37C, showed an initial location on the cell surface and temperature- and time-dependent internalization of the probe. Our findings suggest an efficient mannosylated ligand uptake system through putative lectin(s) that may be operational in inflammatory and immune responses.


Subject(s)
Mannose/metabolism , Schwann Cells/metabolism , Cell Line, Tumor , Endocytosis/immunology , Fluorescein-5-isothiocyanate/metabolism , Fluorescent Dyes/metabolism , Gold/metabolism , Horseradish Peroxidase/metabolism , Horseradish Peroxidase/ultrastructure , Humans , Immunohistochemistry , Lectins, C-Type/metabolism , Lectins, C-Type/ultrastructure , Ligands , Mannose Receptor , Mannose-Binding Lectins/metabolism , Mannose-Binding Lectins/ultrastructure , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/ultrastructure , S100 Proteins/metabolism , Schwann Cells/ultrastructure
19.
Proteomics ; 8(12): 2477-91, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18563741

ABSTRACT

The complete sequence of the Mycobacterium leprae genome, an obligate intracellular pathogen, shows a dramatic reduction of functional genes, with a coding capacity of less than 50%. Despite this massive gene decay, the leprosy bacillus has managed to preserve a minimal gene set, most of it shared with Mycobacterium tuberculosis, allowing its survival in the host with ensuing pathological manifestations. Thus, the identification of proteins that are actually expressed in vivo by M. leprae is of high significance in understanding obligate, intracellular mycobacterial pathogenesis. In this study, a high-throughput proteomic approach was undertaken resulting in the identification of 218 new M. leprae proteins. Of these, 60 were in the soluble/cytosol fraction, 98 in the membrane and 104 in the cell wall. Although several proteins were identified in more than one subcellular fraction, the majority were unique to one. As expected, a high percentage of these included enzymes responsible for lipid biosynthesis and degradation, biosynthesis of the major components of the mycobacterial cell envelope, proteins involved in transportation across lipid barriers, and lipoproteins and transmembrane proteins with unknown functions. The data presented in this study contribute to our understanding of the in vivo composition and physiology of the mycobacterial cell envelope, a compartment known to play a major role in bacterial pathogenesis.


Subject(s)
Bacterial Proteins/analysis , Cell Membrane/chemistry , Mycobacterium leprae/cytology , Proteome/analysis , Proteomics/methods , Algorithms , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Wall/chemistry , Cell Wall/genetics , Cell Wall/metabolism , Cytosol/chemistry , Cytosol/drug effects , Isoelectric Focusing , Models, Biological , Molecular Weight , Mycobacterium leprae/genetics , Mycobacterium leprae/metabolism , Peptide Mapping , Reproducibility of Results , Software , Solubility , Subcellular Fractions/metabolism , Trypsin/pharmacology
20.
Tuberculosis (Edinb) ; 87(3): 202-11, 2007 May.
Article in English | MEDLINE | ID: mdl-17049309

ABSTRACT

There are no reliable means for detecting subclinical mycobacterial infections. The recent sequencing of several mycobacterial genomes has now afforded new opportunities for the development of pathogen-specific diagnostic tests, critical in the context of leprosy and tuberculosis control. In the present study, we applied a multi-parametric flow cytometric analysis that allowed the investigation of T-cell functions in order to define immunological markers that measure previous exposure to mycobacteria. We compared the in vivo response to PPD, the gold standard skin test reagent for measuring previous exposure to Mycobacterium tuberculosis, with in vitro parameters of leukocyte activation in five PPD positive and five PPD negative healthy volunteers. PPD-stimulated peripheral leukocytes expressing CD4, CD69, cutaneous lymphocyte-associated antigen (CLA) and intracellular IFN-gamma were enumerated in whole blood and compared with the size of in vivo PPD-induced induration and IFN-gamma production levels as measured by ELISA in supernatants of PPD-stimulated peripheral blood mononuclear cells. The reactivity to the tuberculin skin test (TST) was associated with markedly increased frequencies of PPD-responsive activated (CD69+) and IFN-gamma-producing CD4+T cells. Detection of PPD-specific IFN-gamma producing leukocytes was restricted to CD4+T cells and a subset of these cells was shown to express the skin homing molecule CLA. Multiple linear regression modeling of responses to PPD showed the highest association between skin test indurations and frequencies of PPD-responsive IFN-gamma-producing CD4+CD69+ T cells. Our data show that the in vitro enumeration of antigen-specific IFN-gamma-producing CD4+ T cells can provide an alternative to the in vivo tuberculin test for the detection of latent Mycobacterium tuberculosis infection. Moreover, the measurement of these immunological parameters can be useful for the screening of new specific antigens defined by the genome sequence allowing selection of the best candidates for new diagnostics (including new skin tests), and vaccines for leprosy and tuberculosis.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Interferon-gamma/metabolism , Tuberculin Test , Adult , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , CD4 Lymphocyte Count , Female , Humans , Lectins, C-Type , Lymphocyte Activation , Male , Tuberculin
SELECTION OF CITATIONS
SEARCH DETAIL
...