Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Euro Surveill ; 27(43)2022 10.
Article in English | MEDLINE | ID: mdl-36305336

ABSTRACT

BackgroundTracking person-to-person SARS-CoV-2 transmission in the population is important to understand the epidemiology of community transmission and may contribute to the containment of SARS-CoV-2. Neither contact tracing nor genomic surveillance alone, however, are typically sufficient to achieve this objective.AimWe demonstrate the successful application of the integrated genomic surveillance (IGS) system of the German city of Düsseldorf for tracing SARS-CoV-2 transmission chains in the population as well as detecting and investigating travel-associated SARS-CoV-2 infection clusters.MethodsGenomic surveillance, phylogenetic analysis, and structured case interviews were integrated to elucidate two genetically defined clusters of SARS-CoV-2 isolates detected by IGS in Düsseldorf in July 2021.ResultsCluster 1 (n = 67 Düsseldorf cases) and Cluster 2 (n = 36) were detected in a surveillance dataset of 518 high-quality SARS-CoV-2 genomes from Düsseldorf (53% of total cases, sampled mid-June to July 2021). Cluster 1 could be traced back to a complex pattern of transmission in nightlife venues following a putative importation by a SARS-CoV-2-infected return traveller (IP) in late June; 28 SARS-CoV-2 cases could be epidemiologically directly linked to IP. Supported by viral genome data from Spain, Cluster 2 was shown to represent multiple independent introduction events of a viral strain circulating in Catalonia and other European countries, followed by diffuse community transmission in Düsseldorf.ConclusionIGS enabled high-resolution tracing of SARS-CoV-2 transmission in an internationally connected city during community transmission and provided infection chain-level evidence of the downstream propagation of travel-imported SARS-CoV-2 cases.


Subject(s)
COVID-19 , Communicable Diseases, Imported , Humans , SARS-CoV-2/genetics , Travel , Communicable Diseases, Imported/epidemiology , COVID-19/epidemiology , Phylogeny , Contact Tracing , Germany/epidemiology , Genomics
2.
Preprint in English | medRxiv | ID: ppmedrxiv-21264530

ABSTRACT

Integration of genomic surveillance with contact tracing provides a powerful tool for the reconstruction of person-to-person pathogen transmission chains. We report two large clusters of SARS-CoV-2 cases ("Delta" clade, 110 cases combined) detected in July 2021 by Integrated Genomic Surveillance in Dusseldorf. Structured interviews and deep contact tracing demonstrated an association to a single SARS-CoV-2 infected return traveller (Cluster 1) and to return travel from Catalonia and other European countries (Cluster 2), highlighting the importance of containing travel-imported SARS-CoV-2 infections.

3.
Article in English | WPRIM (Western Pacific) | ID: wpr-98060

ABSTRACT

BACKGROUND/AIMS: Current therapy for gastroparesis with prokinetic agents is limited by options and side effects. One macrolide, erythromycin (ERY), is associated with possible sudden cardiac death from QT prolongation due to P450 iso-enzyme inhibition. An alternative, azithromycin (AZI), lacks P450 inhibition. We compared the effect on gastric emptying half-times (t(1/2)) between AZI and ERY in patients diagnosed with gastroparesis by gastric emptying scintigraphy. METHODS: Patients stopped medications known to affect gastric emptying prior to the study, and then ingested 1 scrambled egg meal labeled with 18.5-37 MBq of technetium-99m sulfur colloid followed by continuous imaging for 120 minutes, at 1 minute per frame. A simple linear fit was applied to the rate of gastric emptying, and gastric emptying t(1/2) was calculated (normal = 45-90 minutes). At 75-80 minutes, if the stomach had clearly not emptied, patients were given either ERY (n = 60) or AZI (n = 60) 250 mg IV and a new post-treatment gastric emptying t(1/2) was calculated. RESULTS: Comparison of gastric emptying t(1/2) showed a similar positive effect (mean gastric emptying t(1/2) for AZI = 10.4 +/- 7.2 minutes; mean gastric emptying t(1/2) for ERY = 11.9 +/- 8.4 minutes; p = 0.30). CONCLUSIONS: AZI is equivalent to ERY in accelerating the gastric emptying of adult patients with gastroparesis. Given the longer duration of action, better side effect profile and lack of P450 interaction for AZI as compared with ERY, further research should evaluate the long term effectiveness and safety of AZI as a gastroparesis treatment.


Subject(s)
Adult , Humans , Azithromycin , Colloids , Death, Sudden, Cardiac , Erythromycin , Gastric Emptying , Gastroparesis , Meals , Ovum , Stomach , Sulfur
4.
J AOAC Int ; 82(4): 923-8, 1999.
Article in English | MEDLINE | ID: mdl-10490320

ABSTRACT

This paper presents results of a collaborative trial study (IUPAC project No. 650/93/97) involving 29 laboratories in 13 countries applying a method for detecting genetically modified organisms (GMOs) in food. The method is based on using the polymerase chain reaction to determine the 35S promotor and the NOS terminator for detection of GMOs. reference materials were produced that were derived from genetically modified soy beans and maize. Correct identification of samples containing 2% GMOs is achievable for both soy beans and maize. For samples containing 0.5% genetically modified soy beans, analysis of the 35S promotor resulted also in a 100% correct classification. However, 3 false-negative results (out of 105 samples analyzed) were reported for analysis of the NOS terminator, which is due to the lower sensitivity of this method. Because of the bigger genomic DNA of maize, the probability of encountering false-negative results for samples containing 0.5% GMOs is greater for maize than for soy beans. For blank samples (0% GMO), only 2 false-positive results for soy beans and one for maize were reported. These results appeared as very weak signals and were most probably due to contamination of laboratory equipment.


Subject(s)
Food Analysis , Genetic Engineering , Glycine max/genetics , Plants, Genetically Modified , Polymerase Chain Reaction , Zea mays/genetics , Agrobacterium tumefaciens/genetics , Caulimovirus/genetics , Electrophoresis, Polyacrylamide Gel , False Negative Reactions , False Positive Reactions , Promoter Regions, Genetic , Terminator Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...