Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-464900

ABSTRACT

Using an unbiased interrogation of the memory B cell repertoire of convalescent COVID-19 patients, we identified human antibodies that demonstrated robust antiviral activity in vitro and efficacy in vivo against all tested SARS-CoV-2 variants. Here, we describe the pre-clinical characterization of an antibody cocktail, IMM-BCP-01, that consists of three unique, patient-derived recombinant neutralizing antibodies directed at non-overlapping surfaces on the SARS-CoV-2 spike protein. Two antibodies, IMM20184 and IMM20190 directly block spike binding to the ACE2 receptor. Binding of the third antibody, IMM20253, to its unique epitope on the outer surface of RBD, alters the conformation of the spike trimer, promoting release of spike monomers. These antibodies decreased SARS-CoV-2 infection in the lungs of Syrian golden hamsters, and efficacy in vivo efficacy was associated with broad antiviral neutralizing activity against multiple SARS-CoV-2 variants and robust antiviral effector function response, including phagocytosis, ADCC, and complement pathway activation. Our pre-clinical data demonstrate that the three antibody cocktail IMM-BCP-01 shows promising potential for preventing or treating SARS-CoV-2 infection in susceptible individuals. One sentence summaryIMM-BCP-01 cocktail triggers Spike Trimer dissociation, neutralizes all tested variants in vitro, activates a robust effector response and dose-dependently inhibits virus in vivo.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-422952

ABSTRACT

The SARS-CoV-2 pandemic has affected more than 70 million people worldwide and resulted in over 1.5 million deaths. A broad deployment of effective immunization campaigns to achieve population immunity at global scale will depend on the biological and logistical attributes of the vaccine. Here, two adeno-associated viral (AAV)-based vaccine candidates demonstrate potent immunogenicity in mouse and nonhuman primates following a single injection. Peak neutralizing antibody titers remain sustained at 5 months and are complemented by functional memory T-cells responses. The AAVrh32.33 capsid of the AAVCOVID vaccine is an engineered AAV to which no relevant pre-existing immunity exists in humans. Moreover, the vaccine is stable at room temperature for at least one month and is produced at high yields using established commercial manufacturing processes in the gene therapy industry. Thus, this methodology holds as a very promising single dose, thermostable vaccine platform well-suited to address emerging pathogens on a global scale.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-381533

ABSTRACT

The SARS-CoV-2 viral spike (S) protein mediates attachment and entry into host cells and is a major target of vaccine and drug design. Potent SARS-CoV-2 neutralizing antibodies derived from closely related antibody heavy chain genes (IGHV3-53 or 3-66) have been isolated from multiple COVID-19 convalescent individuals. These usually contain minimal somatic mutations and bind the S receptor-binding domain (RBD) to interfere with attachment to the cellular receptor angiotensin-converting enzyme 2 (ACE2). We used antigen-specific single B cell sorting to isolate S-reactive monoclonal antibodies from the blood of a COVID-19 convalescent individual. The seven most potent neutralizing antibodies were somatic variants of the same IGHV3-53-derived antibody and bind the RBD with varying affinity. We report X-ray crystal structures of four Fab variants bound to the RBD and use the structures to explain the basis for changes in RBD affinity. We show that a germline revertant antibody binds tightly to the SARS-CoV-2 RBD and neutralizes virus, and that gains in affinity for the RBD do not necessarily correlate with increased neutralization potency, suggesting that somatic mutation is not required to exert robust antiviral effect. Our studies clarify the molecular basis for a heavily germline-biased human antibody response to SARS-CoV-2.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-301952

ABSTRACT

Effective intervention strategies are urgently needed to control the COVID-19 pandemic. Human angiotensin-converting enzyme 2 (ACE2) is a carboxypeptidase that forms a dimer and serves as the cellular receptor for SARS-CoV-2. It is also a key negative regulator of the renin-angiotensin system (RAS), conserved in mammals, which modulates vascular functions. We report here the properties of a trimeric ACE2 variant, created by a structure-based approach, with binding affinity of ~60 pM for the spike (S) protein of SARS-CoV-2, while preserving the wildtype peptidase activity as well as the ability to block activation of angiotensin II receptor type 1 in the RAS. Moreover, the engineered ACE2 potently inhibits infection of SARS-CoV-2 in cell culture. These results suggest that engineered, trimeric ACE2 may be a promising anti-SARS-CoV-2 agent for treating COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...