Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37511092

ABSTRACT

Newly emerging data suggest that several neutrophil defense mechanisms may play a role in both aggravating and protecting against malaria. These exciting findings suggest that the balance of these cells in the host body may have an impact on the pathogenesis of malaria. To fully understand the role of neutrophils in severe forms of malaria, such as cerebral malaria (CM), it is critical to gain a comprehensive understanding of their behavior and functions. This study investigated the dynamics of neutrophil and T cell responses in C57BL/6 and BALB/c mice infected with Plasmodium berghei ANKA, murine models of experimental cerebral malaria (ECM) and non-cerebral experimental malaria, respectively. The results demonstrated an increase in neutrophil percentage and neutrophil-T cell ratios in the spleen and blood before the development of clinical signs of ECM, which is a phenomenon not observed in the non-susceptible model of cerebral malaria. Furthermore, despite the development of distinct forms of malaria in the two strains of infected animals, parasitemia levels showed equivalent increases throughout the infection period evaluated. These findings suggest that the neutrophil percentage and neutrophil-T cell ratios may be valuable predictive tools for assessing the dynamics and composition of immune responses involved in the determinism of ECM development, thus contributing to the advancing of our understanding of its pathogenesis.


Subject(s)
Malaria, Cerebral , Animals , Mice , Neutrophils/pathology , Mice, Inbred C57BL , Plasmodium berghei , CD8-Positive T-Lymphocytes , Disease Models, Animal
2.
Int J Biol Sci ; 19(11): 3383-3394, 2023.
Article in English | MEDLINE | ID: mdl-37496995

ABSTRACT

The immune and nervous systems can be thought of as cognitive and plastic systems, since they are both involved in cognition/recognition processes and can be architecturally and functionally modified by experience, and such changes can influence each other's functioning. The immune system can affect nervous system function depending on the nature of the immune stimuli and the pro/anti-inflammatory responses they generate. Here we consider interactions between the immune and nervous systems in homeostasis and disease, including the beneficial and deleterious effects of immune stimuli on brain function and the impact of severe and non-severe malaria parasite infections on neurocognitive and behavioral parameters in human and experimental murine malaria. We also discuss the effect of immunization on the reversal of cognitive deficits associated with experimental non-severe malaria in a model susceptible to the development of the cerebral form of the illness. Finally, we consider the possibility of using human vaccines, largely exploited as immune-prophylactics for infectious diseases, as therapeutic tools to prevent or mitigate the expression of cognitive deficits in infectious and chronic degenerative diseases.


Subject(s)
Cognition Disorders , Malaria , Humans , Animals , Mice , Malaria/parasitology , Brain , Cognition Disorders/parasitology , Cognition , Homeostasis
3.
Mem Inst Oswaldo Cruz ; 118: e230023, 2023.
Article in English | MEDLINE | ID: mdl-37162063

ABSTRACT

Innate immunity refers to the mechanisms responsible for the first line of defense against pathogens, cancer cells and toxins. The innate immune system is also responsible for the initial activation of the body's specific immune response (adaptive immunity). Innate immunity was studied and further developed in parallel with adaptive immunity beginning in the first half of the 19th century and has been gaining increasing importance to our understanding of health and disease. In the present overview, we describe the main findings and ideas that contributed to the development of innate immunity as a continually expanding branch of modern immunology. We start with the toxicological studies by Von Haller and Magendie, in the late 18th and early 19th centuries, and continue with the discoveries in invertebrate immunity that supported the discovery and characterization of lipopolysaccharide (LPS) and pattern recognition receptors that led to the development of the pattern recognition and danger theory.


Subject(s)
Immunity, Innate
4.
Front Immunol ; 14: 1122411, 2023.
Article in English | MEDLINE | ID: mdl-36895563

ABSTRACT

Malaria and leishmaniasis are endemic parasitic diseases in tropical and subtropical countries. Although the overlap of these diseases in the same host is frequently described, co-infection remains a neglected issue in the medical and scientific community. The complex relationship of concomitant infections with Plasmodium spp. and Leishmania spp. is highlighted in studies of natural and experimental co-infections, showing how this "dual" infection can exacerbate or suppress an effective immune response to these protozoa. Thus, a Plasmodium infection preceding or following Leishmania infection can impact the clinical course, accurate diagnosis, and management of leishmaniasis, and vice versa. The concept that in nature we are affected by concomitant infections reinforces the need to address the theme and ensure its due importance. In this review we explore and describe the studies available in the literature on Plasmodium spp. and Leishmania spp. co-infection, the scenarios, and the factors that may influence the course of these diseases.


Subject(s)
Coinfection , Leishmania , Leishmaniasis , Malaria , Plasmodium , Humans , Coinfection/complications , Leishmaniasis/complications , Leishmaniasis/diagnosis , Leishmaniasis/drug therapy , Malaria/complications , Malaria/epidemiology
5.
Brain Behav Immun ; 109: 102-104, 2023 03.
Article in English | MEDLINE | ID: mdl-36657622

ABSTRACT

Malaria, an ancient infectious parasitic disease, is caused by protozoa of the genus Plasmodium, whose erythrocytic cycle is accompanied by fever, headache, sweating and chills and a systemic inflammation that can progress to severe forms of disease, including cerebral malaria. Approximately 25% of survivors of this syndrome develop sequelae that may include neurological, neurocognitive, behavioral alterations and poor school performance. Furthermore, some outcomes have also been recorded following episodes of non-severe malaria, which correspond to the most common clinical form of the disease worldwide. There is a body of evidence that neuroinflammation, due to systemic inflammation, plays an important role in the neuropathogenesis of malaria culminating in these cognitive dysfunctions. Preclinical studies suggest that vaccination with type 2 immune response elicitors, such as the tetanus-diphtheria (Td) vaccine, may exert a beneficial immunomodulatory effect by alleviating neuroinflammation. In this viewpoint article, vaccination is proposed as a therapy approach to revert or mitigate neurocognitive deficits associated with malaria.


Subject(s)
Malaria, Cerebral , Neuroinflammatory Diseases , Humans , Malaria, Cerebral/complications , Diphtheria-Tetanus Vaccine , Vaccination , Inflammation , Immunity
6.
Mem. Inst. Oswaldo Cruz ; 118: e230023, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1440669

ABSTRACT

Innate immunity refers to the mechanisms responsible for the first line of defense against pathogens, cancer cells and toxins. The innate immune system is also responsible for the initial activation of the body's specific immune response (adaptive immunity). Innate immunity was studied and further developed in parallel with adaptive immunity beginning in the first half of the 19th century and has been gaining increasing importance to our understanding of health and disease. In the present overview, we describe the main findings and ideas that contributed to the development of innate immunity as a continually expanding branch of modern immunology. We start with the toxicological studies by Von Haller and Magendie, in the late 18th and early 19th centuries, and continue with the discoveries in invertebrate immunity that supported the discovery and characterization of lipopolysaccharide (LPS) and pattern recognition receptors that led to the development of the pattern recognition and danger theory.

7.
Front Immunol ; 13: 1021211, 2022.
Article in English | MEDLINE | ID: mdl-36505414

ABSTRACT

Data recently reported by our group indicate that stimulation with a pool of immunogens capable of eliciting type 2 immune responses can restore the cognitive and behavioral dysfunctions recorded after a single episode of non-severe rodent malaria caused by Plasmodium berghei ANKA. Here we explored the hypothesis that isolated immunization with one of the type 2 immune response-inducing immunogens, the human diphtheria-tetanus (dT) vaccine, may revert damages associated with malaria. To investigate this possibility, we studied the dynamics of cognitive deficits and anxiety-like phenotype following non-severe experimental malaria and evaluated the effects of immunization with both dT and of a pool of type 2 immune stimuli in reversing these impairments. Locomotor activity and long-term memory deficits were assessed through the open field test (OFT) and novel object recognition task (NORT), while the anxiety-like phenotype was assessed by OFT and light/dark task (LDT). Our results indicate that poor performance in cognitive-behavioral tests can be detected as early as the 12th day after the end of antimalarial treatment with chloroquine and may persist for up to 155 days post infection. The single immunization strategy with the human dT vaccine showed promise in reversal of long-term memory deficits in NORT, and anxiety-like behavior in OFT and LDT.


Subject(s)
Cognition Disorders , Cognitive Dysfunction , Humans , Immunomodulation , Diphtheria-Tetanus Vaccine , Immunity , Cognition
8.
Front Cell Infect Microbiol ; 12: 829413, 2022.
Article in English | MEDLINE | ID: mdl-35281436

ABSTRACT

Typical of tropical and subtropical regions, malaria is caused by protozoa of the genus Plasmodium and is, still today, despite all efforts and advances in controlling the disease, a major issue of public health. Its clinical course can present either as the classic episodes of fever, sweating, chills and headache or as nonspecific symptoms of acute febrile syndromes and may evolve to severe forms. Survivors of cerebral malaria, the most severe and lethal complication of the disease, might develop neurological, cognitive and behavioral sequelae. This overview discusses the neurocognitive deficits and behavioral alterations resulting from human naturally acquired infections and murine experimental models of malaria. We highlighted recent reports of cognitive and behavioral sequelae of non-severe malaria, the most prevalent clinical form of the disease worldwide. These sequelae have gained more attention in recent years and therapies for them are required and demand advances in the understanding of neuropathogenesis. Recent studies using experimental murine models point to immunomodulation as a potential approach to prevent or revert neurocognitive sequelae of malaria.


Subject(s)
Malaria, Cerebral , Plasmodium , Animals , Disease Progression , Humans , Immunomodulation , Malaria, Cerebral/complications , Mice
9.
Sci Rep ; 11(1): 14857, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290279

ABSTRACT

The immune system plays a role in the maintenance of healthy neurocognitive function. Different patterns of immune response triggered by distinct stimuli may affect nervous functions through regulatory or deregulatory signals, depending on the properties of the exogenous immunogens. Here, we investigate the effect of immune stimulation on cognitive-behavioural parameters in healthy mice and its impact on cognitive sequelae resulting from non-severe experimental malaria. We show that immune modulation induced by a specific combination of immune stimuli that induce a type 2 immune response can enhance long-term recognition memory in healthy adult mice subjected to novel object recognition task (NORT) and reverse a lack of recognition ability in NORT and anxiety-like behaviour in a light/dark task that result from a single episode of mild Plasmodium berghei ANKA malaria. Our findings suggest a potential use of immunogens for boosting and recovering recognition memory that may be impaired by chronic and infectious diseases and by the effects of ageing.


Subject(s)
Cognitive Dysfunction/immunology , Cognitive Dysfunction/therapy , Immune System/immunology , Immune System/physiology , Immunization , Malaria/complications , Memory/physiology , Recognition, Psychology/physiology , Animals , Anxiety , Cognitive Dysfunction/etiology , Female , Mice, Inbred C57BL , Plasmodium berghei
10.
Parasit Vectors ; 11(1): 191, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29554958

ABSTRACT

BACKGROUND: Cerebral malaria, the main complication of Plasmodium falciparum infection in humans, is associated with persistent neurocognitive sequels both in human disease and the murine experimental model. In recent years, cognitive deficits related to uncomplicated (non-cerebral) malaria have also been reported in chronically exposed residents of endemic areas, but not in some murine experimental models of non-cerebral malaria. This study aimed at evaluating the influence of uncomplicated malaria on different behavioural paradigms associated with memory and anxiety-like parameters in a murine model that has the ability to develop cerebral malaria. METHODS: Plasmodium berghei ANKA-infected and non-infected C57BL/6 mice were used. Development of cerebral malaria was prevented by chloroquine treatment starting on the fourth day of infection. The control group (non-infected mice) were treated with PBS. The effect of uncomplicated malaria infection on locomotor habituation, short and long-term memory and anxious-like behaviour was evaluated 64 days after parasite clearance in assays including open field, object recognition, Y-maze and light/dark tasks. RESULTS: Plasmodium berghei ANKA-infected mice showed significant long-lasting disturbances reflected by a long-term memory-related behaviour on open field and object recognition tasks, accompanied by an anxious-like phenotype availed on open field and light-dark tasks. CONCLUSIONS: Long-term neurocognitive sequels may follow an uncomplicated malaria episode in an experimental model prone to develop cerebral malaria, even if the infection is treated before the appearance of clinical signs of cerebral impairment.


Subject(s)
Anxiety , Malaria/complications , Memory , Time , Animals , Antimalarials/therapeutic use , Brain/parasitology , Cognition Disorders/etiology , Cognition Disorders/parasitology , Disease Models, Animal , Malaria/parasitology , Malaria, Cerebral , Mice , Mice, Inbred C57BL , Parasitemia/drug therapy , Plasmodium berghei/isolation & purification
11.
APMIS ; 117(9): 672-80, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19703127

ABSTRACT

Toxoplasma gondii is an obligate intracellular parasite that is able to disseminate into deep tissues and cross biological barriers, reaching immunoprivileged sites such as the brain and retina. The parasite is able to infect macrophages and dendritic cells and use them for dispersal throughout the body, but the activation state of those cells is unknown. We investigated the ability of human and murine cells from monocytic/macrophage lineages that had not previously been exposed to inflammatory cytokines to up-regulate co-stimulatory and adhesion molecules upon infection. Toxoplasma gondii-infected human monocytes (freshly isolated and THP1 lineage) were unable to up-regulate CD86, CD83, CD40 or CD1a. CD80 expression increased in infected cells but expression of l-selectin and beta2 integrin was unaltered. We evaluated the ability of infected macrophages from wild type C57/BL/6 or CD14(-/-) mice to migrate in 8 mum transwells. Infected cells from CD14(-/-) mice were more likely to de-adhere than infected cells from wild type mice but they did not show any increase in migratory ability. The non-stimulatory profile of these infected cells may contribute to parasite spread throughout the lymphatic circulation in the initial phases of infection.


Subject(s)
Macrophages/immunology , Macrophages/parasitology , Monocytes/immunology , Monocytes/parasitology , Toxoplasma/pathogenicity , Toxoplasmosis/immunology , Animals , Antigens, CD/metabolism , Cell Adhesion Molecules/metabolism , Cell Line , Cell Movement , HLA-DR Antigens/metabolism , Humans , In Vitro Techniques , Lipopolysaccharide Receptors/genetics , Lipopolysaccharide Receptors/metabolism , Macrophage Activation , Macrophages/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Monocytes/physiology , Toxoplasma/immunology , Toxoplasmosis/parasitology
12.
Microbes Infect ; 6(14): 1287-96, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15555535

ABSTRACT

Toxoplasma gondii is an obligate intracellular parasite, able to disseminate into deep tissues and cross biological barriers, reaching immunoprivileged sites such as the brain and retina. In order to investigate whether the parasite uses leukocyte trafficking to disseminate throughout the host, the adhesive potential to extracellular matrix components, the expression of adhesion molecules and the in vivo migration of murine macrophages infected with RH strain of T. gondii were investigated. Cellular adhesion to fibronectin, laminin and collagen IV decreased after 24 h of T. gondii infection. However, the decrease in adhesion of infected macrophages observed at early infection was reversed after 48 h. Moreover, decreased adhesion was dependent on active penetration, since heat-killed parasites were unable to reproduce it. Expression of integrins alphaL, alpha4 and alpha5 chains was downmodulated early postinfection, but a progressive regain of expression was observed after 12 h of infection. Expression of beta2, alphav and alpha4 integrins by peritoneal macrophages at late infection was also gradually reestablished. The assessment of in vivo migration of infected macrophages labeled with the fluorescent dye 5-chloromethylfluorescein diacetate showed a 48-h delay in migration to cervical lymph nodes when compared to LPS pre-stimulated macrophages. Furthermore, cells that migrate to distal lymph nodes were loaded with live parasites. Taken together, these results provide insights about T. gondii escape from the host immune response, placing the macrophage as a "Trojan horse", contributing to parasite dissemination and access to immunoprivileged sites.


Subject(s)
Cell Adhesion , Cell Movement/physiology , Macrophages/parasitology , Toxoplasma/pathogenicity , Animals , CD18 Antigens/biosynthesis , CD18 Antigens/genetics , Collagen Type IV/metabolism , Fibronectins/metabolism , Gene Expression Regulation/immunology , Integrin alpha Chains/biosynthesis , Integrin alpha Chains/genetics , Laminin/metabolism , Lymph Nodes/cytology , Macrophages/physiology , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...