Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21254091

ABSTRACT

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is used worldwide to test and trace the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). "Extraction-less" or "direct" real time-reverse transcription polymerase chain reaction (RT-PCR) is an open-access qualitative method for SARS-CoV-2 detection from nasopharyngeal or oral pharyngeal samples with the potential to generate actionable data more quickly, at a lower cost, and with fewer experimental resources than full RT-qPCR. This study engaged 10 global testing sites, including laboratories currently experiencing testing limitations due to reagent or equipment shortages, in an international interlaboratory ring trial. Participating laboratories were provided a common protocol, common reagents, aliquots of identical pooled clinical samples, and purified nucleic acids and used their existing in-house equipment. We observed 100% concordance across laboratories in the correct identification of all positive and negative samples, with highly similar cycle threshold values. The test also performed well when applied to locally collected patient nasopharyngeal samples, provided the viral transport media did not contain charcoal or guanidine, both of which appeared to potently inhibit the RT-PCR reaction. Our results suggest that open-access, direct RT-PCR assays are a feasible option for more efficient COVID-19 coronavirus disease testing as demanded by the continuing pandemic.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-346262

ABSTRACT

Establishing new experimental animal models to assess the safety and immune response to the antigen used in the development of COVID-19 vaccine is an imperative issue. Based on the advantages of using zebrafish as a model in research, herein we suggest doing this to test the safety of the putative vaccine candidates and to study immune response against the virus. We produced a recombinant N-terminal fraction of the Spike SARS-CoV-2 protein and injected it into adult female zebrafish. The specimens generated humoral immunity and passed the antibodies to the eggs. However, they presented adverse reactions and inflammatory responses similar to severe cases of human COVID-19. The analysis of the structure and function of zebrafish and human Angiotensin-converting enzyme 2, the main human receptor for virus infection, presented remarkable sequence similarities. Moreover, bioinformatic analysis predicted protein-protein interaction of the Spike SARS-CoV-2 fragment and the Toll-like receptor pathway. It might help in the choice of future therapeutic pharmaceutical drugs to be studied. Based on the in vivo and in silico results presented here, we propose the zebrafish as a model for translational research into the safety of the vaccine and the immune response of the vertebrate organism to the SARS-CoV-2 virus.

SELECTION OF CITATIONS
SEARCH DETAIL
...