Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
Arch. bronconeumol. (Ed. impr.) ; 59(12): 813-820, dic. 2023. tab, graf, mapas
Article in English | IBECS | ID: ibc-228401

ABSTRACT

Introduction: Maximal inspiratory and expiratory pressures (PImax/PEmax) reference equations obtained in healthy people are needed to correctly interpret respiratory muscle strength. Currently, no clear cut-off points defining respiratory muscle weakness are available. We aimed to establish sex-specific reference equations for PImax/PEmax in a large sample of healthy adults and to objectively determine cut-off points for respiratory muscle weakness. Methods: A multicentre cross-sectional study was conducted across 14 Spanish centres. Healthy non-smoking volunteers aged 18–80 years stratified by sex and age were recruited. PImax/PEmax were assessed using uniform methodology according to international standards. Multiple linear regressions were used to obtain reference equations. Cut-off points for respiratory muscle weakness were established by using T-scores. Results: The final sample consisted of 610 subjects (314 females; 48 [standard deviation, SD: 17] years). Reference equations for PImax/PEmax included body mass index and a squared term of the age as independent variables for both sexes (p<0.01). Cut-off points for respiratory muscle weakness based on T-scores ≥2.5 SD below the peak mean value achieved at a young age were: 62 and 83cmH2O for PImax and 81 and 109cmH2O for PEmax in females and males, respectively. Conclusion: These reference values, based on the largest dataset collected in a European population to date using uniform methodology, help identify cut-off points for respiratory muscle weakness in females and males. These data will help to better identify the presence of respiratory muscle weakness and to determine indications for interventions to improve respiratory muscle function. (AU)


Subject(s)
Humans , Male , Female , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Maximal Respiratory Pressures , Respiratory Insufficiency , Cross-Sectional Studies , Spain , Muscle Strength/physiology , Respiratory Muscles/physiology
2.
Arch Bronconeumol ; 59(12): 813-820, 2023 Dec.
Article in English, Spanish | MEDLINE | ID: mdl-37839949

ABSTRACT

INTRODUCTION: Maximal inspiratory and expiratory pressures (PImax/PEmax) reference equations obtained in healthy people are needed to correctly interpret respiratory muscle strength. Currently, no clear cut-off points defining respiratory muscle weakness are available. We aimed to establish sex-specific reference equations for PImax/PEmax in a large sample of healthy adults and to objectively determine cut-off points for respiratory muscle weakness. METHODS: A multicentre cross-sectional study was conducted across 14 Spanish centres. Healthy non-smoking volunteers aged 18-80 years stratified by sex and age were recruited. PImax/PEmax were assessed using uniform methodology according to international standards. Multiple linear regressions were used to obtain reference equations. Cut-off points for respiratory muscle weakness were established by using T-scores. RESULTS: The final sample consisted of 610 subjects (314 females; 48 [standard deviation, SD: 17] years). Reference equations for PImax/PEmax included body mass index and a squared term of the age as independent variables for both sexes (p<0.01). Cut-off points for respiratory muscle weakness based on T-scores ≥2.5 SD below the peak mean value achieved at a young age were: 62 and 83cmH2O for PImax and 81 and 109cmH2O for PEmax in females and males, respectively. CONCLUSION: These reference values, based on the largest dataset collected in a European population to date using uniform methodology, help identify cut-off points for respiratory muscle weakness in females and males. These data will help to better identify the presence of respiratory muscle weakness and to determine indications for interventions to improve respiratory muscle function.


Subject(s)
Maximal Respiratory Pressures , Respiratory Insufficiency , Male , Female , Humans , Adult , Cross-Sectional Studies , Muscle Strength/physiology , Respiratory Muscles/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...