Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
NAR Cancer ; 6(1): zcad063, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38213995

ABSTRACT

Cis-regulatory elements (CREs) and super cis-regulatory elements (SCREs) are non-coding DNA regions which influence the transcription of nearby genes and play critical roles in development. Dysregulated CRE and SCRE activities have been reported to alter the expression of oncogenes and tumor suppressors, thereby regulating cancer hallmarks. To address the strong need for a comprehensive catalogue of dysregulated CREs and SCREs in human cancers, we present TSCRE (http://tscre.zsqylab.com/), an open resource providing tumor-specific and cell type-specific CREs and SCREs derived from the re-analysis of publicly available histone modification profiles. Currently, TSCRE contains 1 864 941 dysregulated CREs and 68 253 dysregulated SCREs identified from 1366 human patient samples spanning 17 different cancer types and 9 histone marks. Over 95% of these elements have been validated in public resources. TSCRE offers comprehensive annotations for each element, including associated genes, expression patterns, clinical prognosis, somatic mutations, transcript factor binding sites, cancer-type specificity, and drug response. Additionally, TSCRE integrates pathway and transcript factor enrichment analyses for each study, enabling in-depth functional and mechanistic investigations. Furthermore, TSCRE provides an interactive interface for users to explore any CRE and SCRE of interest. We believe TSCRE will be a highly valuable platform for the community to discover candidate cancer biomarkers.

2.
Acta Pharmacol Sin ; 44(12): 2537-2548, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37528233

ABSTRACT

5-Fluorouracil (5-FU) is the first-line treatment for colorectal cancer (CRC) patients, but the development of acquired resistance to 5-FU remains a big challenge. Deubiquitinases play a key role in the protein degradation pathway, which is involved in cancer development and chemotherapy resistance. In this study, we investigated the effects of targeted inhibition of the proteasomal deubiquitinases USP14 and UCHL5 on the development of CRC and resistance to 5-FU. By analyzing GEO datasets, we found that the mRNA expression levels of USP14 and UCHL5 in CRC tissues were significantly increased, and negatively correlated with the survival of CRC patients. Knockdown of both USP14 and UCHL5 led to increased 5-FU sensitivity in 5-FU-resistant CRC cell lines (RKO-R and HCT-15R), whereas overexpression of USP14 and UCHL5 in 5-FU-sensitive CRC cells decreased 5-FU sensitivity. B-AP15, a specific inhibitor of USP14 and UCHL5, (1-5 µM) dose-dependently inhibited the viability of RKO, RKO-R, HCT-15, and HCT-15R cells. Furthermore, treatment with b-AP15 reduced the malignant phenotype of CRC cells including cell proliferation and migration, and induced cell death in both 5-FU-sensitive and 5-FU-resistant CRC cells by impairing proteasome function and increasing reactive oxygen species (ROS) production. In addition, b-AP15 inhibited the activation of NF-κB pathway, suppressing cell proliferation. In 5-FU-sensitive and 5-FU-resistant CRC xenografts nude mice, administration of b-AP15 (8 mg·kg-1·d-1, intraperitoneal injection) effectively suppressed the growth of both types of tumors. These results demonstrate that USP14 and UCHL5 play an important role in the development of CRC and resistance to 5-FU. Targeting USP14 and UCHL5 with b-AP15 may represent a promising therapeutic strategy for the treatment of CRC.


Subject(s)
Colorectal Neoplasms , Proteasome Endopeptidase Complex , Animals , Mice , Humans , Proteasome Endopeptidase Complex/metabolism , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Mice, Nude , Apoptosis , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm , Ubiquitin Thiolesterase
4.
J Ethnopharmacol ; 301: 115815, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36220508

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Piper longum L., an herbal medicine used in India and other Asian countries, is prescribed routinely for a range of diseases, including tumor. Piperlongumine, a natural product isolated from Piper longum L., has received widespread attention due to its various pharmacological activities, such as anti-inflammatory, antimicrobial, and antitumor effects. AIM OF THE STUDY: Chronic myelogenous leukemia (CML) is a hematopoietic disease caused by Bcr-Abl fusion gene, with an incidence of 15% in adult leukemias. Targeting Bcr-Abl by imatinib provides a successful treatment approach for CML. However, imatinib resistance is an inevitable issue for CML treatment. In particular, T315I mutant is the most stubborn of the Bcr-Abl point mutants associated with imatinib resistance. Therefore, it is urgent to find an alternative approach to conquer imatinib resistance. This study investigated the role of a natural product piperlongumine in overcoming imatinib resistance in CML. MATERIALS AND METHODS: Cell viability and apoptosis were evaluated by MTS assay and Annexin V/propidium iodide counterstaining assay, respectively. Levels of intracellular signaling proteins were assessed by Western blots. Mitochondrial membrane potential was reflected by the fluorescence intensity of rhodamine-123. The function of proteasome was detected using 20S proteasomal activity assay, proteasomal deubiquitinase activity assay, and deubiquitinase active-site-directed labeling. The antitumor effects of piperlongumine were assessed with mice xenografts. RESULTS: We demonstrate that (i) Piperlongumine inhibits proteasome function by targeting 20S proteasomal peptidases and 19S proteasomal deubiquitinases (USP14 and UCHL5) in Bcr-Abl-WT and Bcr-Abl-T315I CML cells; (ii) Piperlongumine inhibits the cell viability of CML cell lines and primary CML cells; (iii) Proteasome inhibition by piperlongumine leads to cell apoptosis and downregulation of Bcr-Abl; (iv) Piperlongumine suppresses the tumor growth of CML xenografts. CONCLUSIONS: These results support that blockade of proteasome activity by piperlongumine provides a new therapeutic strategy for treating imatinib-resistant CML.


Subject(s)
Antineoplastic Agents , Biological Products , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Mice , Animals , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Proteasome Endopeptidase Complex/metabolism , Drug Resistance, Neoplasm , Cell Proliferation , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Fusion Proteins, bcr-abl/genetics , Apoptosis , Deubiquitinating Enzymes/therapeutic use , Biological Products/therapeutic use , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Ubiquitin Thiolesterase/therapeutic use
5.
Clin Transl Med ; 12(9): e1038, 2022 09.
Article in English | MEDLINE | ID: mdl-36082692

ABSTRACT

BACKGROUND: Chronic myeloid leukaemia (CML) is a haematological cancer featured by the presence of BCR-ABL fusion protein with abnormal tyrosine kinase activation. Classical tyrosine kinase inhibitor (TKI)-based therapies are available to patients with CML. However, acquired resistance to TKI has been a challenging obstacle, especially stubborn T315I mutation is the most common cause. Therefore, it is especially urgent to find more effective targets to overcome TKI resistance induced by BCR-ABLT315I . Proteasomal deubiquitinases (USP14 and UCHL5) have fundamental roles in the ubiquitin-proteasome system and possess multiple functions during cancer progression. METHODS: The human peripheral blood mononuclear cells were collected to measure the mRNA expression of USP14 and UCHL5, as well as to detect the toxicity effect of b-AP15. We explored the effect of b-AP15 on the activity of proteasomal deubiquitinases. We detected the effects of b-AP15 on BCR-ABLWT and BCR-ABLT315I CML cells in vitro and in the subcutaneous tumour model. We knocked down USP14 and/or UCHL5 by shRNA to explore whether these proteasomal deubiquitinases are required for cell proliferation of CML. RESULTS: In this study, we found that increased expression of the proteasomal deubiquitinase USP14 and UCHL5 in primary cancer cells from CML patients compared to healthy donors. b-AP15, an inhibitor of USP14 and UCHL5, exhibited potent tumour-killing activity in BCR-ABLWT and BCR-ABLT315I CML cell lines, as well as in CML xenografts and primary CML cells. Mechanically, pharmacological or genetic inhibition of USP14 and UCHL5 induced cell apoptosis and decreased the protein level of BCR-ABL in CML cells expressing BCR-ABLWT and BCR-ABLT315I . Moreover, b-AP15 synergistically enhanced the cytotoxic effect caused by TKI imatinib in BCR-ABLWT and BCR-ABLT315I CML cells. CONCLUSION: Collectively, our results demonstrate targeting USP14 and UCHL5 as a potential strategy for combating TKI resistance in CML.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Proteasome Endopeptidase Complex , Protein Kinase Inhibitors , Ubiquitin Thiolesterase , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/therapeutic use , Drug Resistance, Neoplasm/genetics , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Fusion Proteins, bcr-abl/pharmacology , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Piperidones/metabolism , Piperidones/pharmacology , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/genetics
6.
Cancer Biol Ther ; 23(1): 319-327, 2022 12 31.
Article in English | MEDLINE | ID: mdl-35332847

ABSTRACT

Approximately 40% of patients with diffuse large B-cell lymphoma (DLBCL) are refractory or relapse to standard chemotherapy, and most of them are activated B cell-like DLBCLs (ABC-DLBCL) and germinal center B cell-like DLBCLs (GCB-DLBCL). SNS-032, a novel and selective CDK7/9 inhibitor, that the first phase clinical trials approved by US FDA for cancer treatment have been completed. In this study, we investigated the anti-tumor effect of SNS-032 in ABC- and GCB-DLBCL subtypes. We report that SNS-032 induced growth inhibition and cell apoptosis in both DLBCL cells in vitro, and inhibited the growth of both DLBCL xenografts in nude mice. Mechanistically, SNS-032 inhibited RNA polymerase II, which led to transcriptional-dependent suppression of NF-κB signaling pathway and its downstream targets involved in cell survival; SNS-032 also downregulates BCL-2 and c-MYC in both mRNA and protein levels. Significantly, these findings provide pre-clinical evidence for application of targeting the CDK7/9 in DLBCL.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Neoplasm Recurrence, Local , Animals , Apoptosis , Cyclin-Dependent Kinases , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Mice, Nude , Oxazoles , Thiazoles
7.
Colloids Surf B Biointerfaces ; 208: 112100, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34547704

ABSTRACT

The adverse effect and drug resistance of Cisplatin (CDDP) could be potential reduced by delivering in targeted nanoparticles and by combining with adjuvant therapy such as photodynamic therapy. In this study, F/CDPR-NP was formulated and characterized for all the physicochemical, biological and in vivo analysis. The results obtained from various in vitro and biological studies showed that encapsulation of CDDP and PBR in PLGA nanoparticles results in controlled release of encapsulated drugs and exhibited significantly low cell viability in CNE-1 and HNE-1 cancer cells. F/CDPR-NP significantly prolonged the blood circulation of the encapsulated drugs. The AUC of CDDP from F/CDPR-NP (4-fold) was significantly higher compared to that of free CDDP and similarly significantly higher t1/2 for CDDP from F/CDPR-NP was observed. F/CDPR-NP in the presence of laser irradiation showed significant reduction in the tumor burden with low tumor cell proliferations compared to either CDPR-NP or free CDDP indicating the potential of targeted nanoparticles and photodynamic therapy. Overall, combination of treatment modalities and active targeting approach paved way for the higher antitumor activity in nasopharyngeal carcinoma model. The positive results from this study will show new horizon for the treatment of other cancer models.


Subject(s)
Antineoplastic Agents , Nanoparticles , Nasopharyngeal Neoplasms , Photochemotherapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cisplatin/pharmacology , Folic Acid , Humans , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Neoplasms/drug therapy
8.
Nucleic Acids Res ; 48(20): 11434-11451, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33080033

ABSTRACT

Core regulatory circuitry (CRC)-dependent transcriptional network is critical for developmental tumors in children and adolescents carrying few gene mutations. However, whether and how CRC contributes to transcription regulation in Ewing sarcoma is unknown. Here, we identify and functionally validate a CRC 'trio' constituted by three transcription factors (TFs): KLF15, TCF4 and NKX2-2, in Ewing sarcoma cells. Epigenomic analyses demonstrate that EWS-FLI1, the primary fusion driver for this cancer, directly establishes super-enhancers of each of these three TFs to activate their transcription. In turn, KLF15, TCF4 and NKX2-2 co-bind to their own and each other's super-enhancers and promoters, forming an inter-connected auto-regulatory loop. Functionally, CRC factors contribute significantly to cell proliferation of Ewing sarcoma both in vitro and in vivo. Mechanistically, CRC factors exhibit prominent capacity of co-regulating the epigenome in cooperation with EWS-FLI1, occupying 77.2% of promoters and 55.6% of enhancers genome-wide. Downstream, CRC TFs coordinately regulate gene expression networks in Ewing sarcoma, controlling important signaling pathways for cancer, such as lipid metabolism pathway, PI3K/AKT and MAPK signaling pathways. Together, molecular characterization of the oncogenic CRC model advances our understanding of the biology of Ewing sarcoma. Moreover, CRC-downstream genes and signaling pathways may contain potential therapeutic targets for this malignancy.


Subject(s)
Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/genetics , Animals , Cell Line, Tumor , Cell Proliferation , Homeobox Protein Nkx-2.2 , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Lipid Metabolism/genetics , Mice, Nude , Nuclear Proteins , Oncogene Proteins, Fusion/physiology , Proto-Oncogene Protein c-fli-1/physiology , RNA-Binding Protein EWS/physiology , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Signal Transduction , Transcription Factor 4/genetics , Transcription Factor 4/metabolism , Transcription Factors , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
9.
Eur J Pharmacol ; 876: 173064, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32179085

ABSTRACT

The selective BCR-ABL tyrosine kinase inhibitor imatinib is one of the first-line therapies in the management of chronic myeloid leukaemia (CML). However, acquired resistance to this inhibitor, which is especially conferred by the T315I point mutation in BCR-ABL, impedes the efficacy of imatinib therapy. Therefore, the discovery and development of novel agents to overcome imatinib resistance is urgently needed. Pseudolaric acid B (PAB), a small molecule isolated from the traditional Chinese medicine Cortex pseudolaricis, has been reported to be a potential candidate for immune disorders and cancer treatment. However, its effects on CML and the involved molecular mechanism have not been reported. In the current study, by performing both in vitro and in vivo experiments in CML cells, we showed that PAB blocked the cell cycle at G2/M phase and subsequently activated the caspase pathway, cleaved the BCR-ABL protein and inhibited the BCR-ABL downstream pathways, ultimately leading to cell proliferation inhibition, cytotoxicity and apoptosis. These events were observed in both imatinib-sensitive and imatinib-insensitive CML cell lines. Moreover, PAB decreased the viability of primary blood mononuclear cells from CML patients and induced apoptosis in these cells. Our findings suggest that PAB could be used as a novel agent to sensitize imatinib-resistant CML.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Diterpenes/pharmacology , Drug Resistance, Neoplasm/drug effects , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Mitosis/drug effects , Animals , Cell Cycle/drug effects , Cell Survival/drug effects , Drugs, Chinese Herbal , Female , Fusion Proteins, bcr-abl/genetics , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred BALB C , Mice, Nude , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
Sci Rep ; 10(1): 1216, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31988304

ABSTRACT

Advanced and therapy-resistant prostate tumors often display neural or neuroendocrine behavior. We assessed the consequences of prostate cancer cell interaction with neural cells, which are rich in the human prostate and resident of the prostate tumor. In 3-dimensional co-culture with neurospheres, red fluorescent human LNCaP cells formed agglomerates on the neurosphere surface. Upon induced neural differentiation, some red fluorescent cells showed morphology of fully differentiated neural cells, indicating fusion between the cancer and neural stem cells. These fusion hybrids survived for extended times in a quiescent state. A few eventually restarted cell division and propagated to form derivative hybrid progenies. Clones of the hybrid progenies were highly heterogeneous; most had lost prostatic and epithelial markers while some had acquired neural marker expression. These results indicate that cancer cells can fuse with bystander neural cells in the tumor microenvironment; and cancer cell fusion is a direct route to tumor cell heterogeneity.


Subject(s)
Neural Stem Cells/metabolism , Neuroendocrine Cells/metabolism , Prostatic Neoplasms/metabolism , Animals , Cell Communication/physiology , Cell Differentiation/physiology , Cell Fusion/methods , Cell Line, Tumor , Cell Proliferation/physiology , Coculture Techniques/methods , Humans , Male , Neural Stem Cells/physiology , Neurosecretory Systems/cytology , Prostate/cytology , Prostatic Neoplasms/immunology , Rats , Stromal Cells/cytology , Tumor Microenvironment/physiology
11.
J Exp Clin Cancer Res ; 38(1): 453, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31694672

ABSTRACT

BACKGROUND: The first line therapy for patients with diffuse large B cell (DLBCL) is R-CHOP. About half of DLBCL patients are either refractory to, or will relapse, after the treatment. Therefore, identifying novel drug targets and effective therapeutic agents is urgently needed for improving DLBCL patient survival. b-AP15, a selective small molecule inhibitor of proteasomal USP14 and UCHL5 deubiquitinases (DUBs), has shown selectivity and efficacy in several other types of cancer cells. This is the first study to report the effect of b-AP15 in DLBCL. METHODS: Cell lines of two DLBCL subtypes, Germinal Center B Cell/ GCB (SU-DHL-4, OCI-LY-1, OCI-LY-19) and Activated B Cell/ABC (SU-DHL-2), were used in the current study. Cell viability was measured by MTS assay, proliferation by trypan blue exclusion staining assay, cellular apoptosis by Annexin V-FITC/PI staining and mitochondrial outer membrane permeability assays, the activities of 20S proteasome peptidases by cleavage of specific fluorogenic substrates, and cell migration was detected by transwell assay in these GCB- and ABC-DLBCL cell lines. Mouse xenograft models of SU-DHL-4 and SU-DHL-2 cells were used to determine in vivo effects of b-AP15 in DLBCL tumors. RESULTS: b-AP15 inhibited proteasome DUB activities and activated cell death pathway, as evident by caspase activation and mitochondria apoptosis in GCB- and ABC- DLBCL cell lines. b-AP15 treatment suppressed migration of GCB- and ABC-DLBCL cells via inhibiting Wnt/ß-catenin and TGFß/Smad pathways. Additionally, b-AP15 significantly inhibited the growth of GCB- and ABC DLBCL in xenograft models. CONCLUSIONS: These results indicate that b-AP15 inhibits cell migration and induces apoptosis in GCB- and ABC-DLBCL cells, and suggest that inhibition of 19S proteasomal DUB should be a novel strategy for DLBCL treatment.


Subject(s)
Apoptosis/drug effects , Deubiquitinating Enzymes/antagonists & inhibitors , Lymphoma, Large B-Cell, Diffuse/metabolism , Piperidones/pharmacology , Proteasome Inhibitors/pharmacology , Animals , Apoptosis Regulatory Proteins/antagonists & inhibitors , Caspases/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Disease Models, Animal , Humans , Mice , Mice, Nude , Xenograft Model Antitumor Assays
12.
Nucleic Acids Res ; 47(3): 1255-1267, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30496486

ABSTRACT

As the second most common malignant bone tumor in children and adolescents, Ewing sarcoma is initiated and exacerbated by a chimeric oncoprotein, most commonly, EWS-FLI1. In this study, we apply epigenomic analysis to characterize the transcription dysregulation in this cancer, focusing on the investigation of super-enhancer and its associated transcriptional regulatory mechanisms. We demonstrate that super-enhancer-associated transcripts are significantly enriched in EWS-FLI1 target genes, contribute to the aberrant transcriptional network of the disease, and mediate the exceptional sensitivity of Ewing sarcoma to transcriptional inhibition. Through integrative analysis, we identify MEIS1 as a super-enhancer-driven oncogene, which co-operates with EWS-FLI1 in transcriptional regulation, and plays a key pro-survival role in Ewing sarcoma. Moreover, APCDD1, another super-enhancer-associated gene, acting as a downstream target of both MEIS1 and EWS-FLI1, is also characterized as a novel tumor-promoting factor in this malignancy. These data delineate super-enhancer-mediated transcriptional deregulation in Ewing sarcoma, and uncover numerous candidate oncogenes which can be exploited for further understanding of the molecular pathogenesis for this disease.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Sarcoma, Ewing/genetics , Transcription, Genetic , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Humans , Nucleotide Motifs/genetics , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/pathology , Signal Transduction/genetics
13.
Proc Natl Acad Sci U S A ; 114(47): 12548-12553, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29109286

ABSTRACT

The circadian system regulates numerous physiological processes including immune responses. Here, we show that mice deficient of the circadian clock genes Cry1 and Cry2 [Cry double knockout (DKO)] develop an autoimmune phenotype including high serum IgG concentrations, serum antinuclear antibodies, and precipitation of IgG, IgM, and complement 3 in glomeruli and massive infiltration of leukocytes into the lungs and kidneys. Flow cytometry of lymphoid organs revealed decreased pre-B cell numbers and a higher percentage of mature recirculating B cells in the bone marrow, as well as increased numbers of B2 B cells in the peritoneal cavity of Cry DKO mice. The B cell receptor (BCR) proximal signaling pathway plays a critical role in autoimmunity regulation. Activation of Cry DKO splenic B cells elicited markedly enhanced tyrosine phosphorylation of cellular proteins compared with cells from control mice, suggesting that overactivation of the BCR-signaling pathway may contribute to the autoimmunity phenotype in the Cry DKO mice. In addition, the expression of C1q, the deficiency of which contributes to the pathogenesis of systemic lupus erythematosus, was significantly down-regulated in Cry DKO B cells. Our results suggest that B cell development, the BCR-signaling pathway, and C1q expression are regulated by circadian clock CRY proteins and that their dysregulation through loss of CRY contributes to autoimmunity.


Subject(s)
Autoimmune Diseases/immunology , Autoimmunity/genetics , B-Lymphocytes/immunology , Circadian Clocks/immunology , Cryptochromes/immunology , Animals , Antibodies, Antinuclear/biosynthesis , Autoimmune Diseases/genetics , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Circadian Clocks/genetics , Complement C1q/genetics , Cryptochromes/deficiency , Cryptochromes/genetics , Gene Expression Profiling , Gene Expression Regulation/immunology , Kidney/immunology , Kidney/pathology , Lung/immunology , Lung/pathology , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Signal Transduction , Spleen/immunology , Spleen/metabolism , Spleen/pathology
14.
Cell Death Dis ; 8(7): e2913, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28682311

ABSTRACT

Chronic myelogenous leukemia (CML) is characterized by the chimeric tyrosine kinase Bcr-Abl. T315I Bcr-Abl is the most notorious point mutation to elicit acquired resistance to imatinib (IM), leading to poor prognosis. Therefore, it is urgent to search for additional approaches and targeting strategies to overcome IM resistance. We recently reported that platinum pyrithione (PtPT) potently inhibits the ubiquitin-proteasome system (UPS) via targeting the 26 S proteasome-associated deubiquitinases (DUBs), without effecting on the 20 S proteasome. Here we further report that (i) PtPT induces apoptosis in Bcr-Abl wild-type and Bcr-Abl-T315I mutation cells including the primary mononuclear cells from CML patients clinically resistant to IM, as well as inhibits the growth of IM-resistant Bcr-Abl-T315I xenografts in vivo; (ii) PtPT downregulates Bcr-Abl level through restraining Bcr-Abl transcription, and decreasing Bcr-Abl protein mediated by DUBs inhibition-induced caspase activation; (iii) UPS inhibition is required for PtPT-induced caspase activation and cell apoptosis. These findings support that PtPT overcomes IM resistance through both Bcr-Abl-dependent and -independent mechanisms. We conclude that PtPT can be a lead compound for further drug development to overcome imatinib resistance in CML patients.


Subject(s)
Antineoplastic Agents/pharmacology , Caspases/genetics , Deubiquitinating Enzymes/genetics , Fusion Proteins, bcr-abl/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Organoplatinum Compounds/pharmacology , Pyridines/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Bortezomib/pharmacology , Caspases/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Deubiquitinating Enzymes/antagonists & inhibitors , Deubiquitinating Enzymes/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/metabolism , Humans , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Male , Mice , Mice, Nude , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Signal Transduction , Xenograft Model Antitumor Assays
15.
Cell Death Dis ; 8(6): e2877, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28617443

ABSTRACT

The molecular mechanism underlying bilirubin neurotoxicity remains obscure. Ubiquitin-proteasome system-mediated proteolysis is pivotal to virtually all cellular processes and cell survival. Here we report for the first time that bilirubin at a clinically relevant elevated level impairs proteasomal function via inhibiting both the 19S proteasome-associated deubiquitinases (USP14 and UCHL5) and the chymotrypsin-like (CT-like) peptidase activity of 20S proteasomes, thereby contributing to bilirubin neurotoxicity. This is supported by multiple lines of evidence. First, sera from patients with hyperbilirubinemia were able to inhibit the peptidase activity of purified 20S proteasome in vitro in a bilirubin concentration-dependent manner; meanwhile, the blood cells of these patients showed significantly increased levels of ubiquitinated proteins (Ub-prs), consistent with proteasome inhibition. Second, intracerebroventricular injection to adult rats or intraperitoneal injections to neonatal rats of bilirubin-induced neural accumulation of Ub-prs, concurrent with other neural pathology; and brain malfunction and pathology induced by neonatal exposure to hyperbilirubinemia were detectable in the rats during their adulthood. Third, in primary cultures of hippocampal neurons, bilirubin strikingly induced Ub-pr accumulation before the activation of cell death pathway becomes discernible. Finally, bilirubin in vitro directly inhibited both the deubiquitination activity of proteasome-associated USP14 and UCHL5 and the CT-like peptidase activity of purified 20S proteasomes, in a dose-dependent manner. Hence, this study has discovered that increased bilirubin at a clinically achievable level can act as a proteasome inhibitor via targeting the 19S proteasome-associated deubiquitinases (DUBs) and, perhaps to a less extent, the 20S proteasome, identifying a novel mechanism for bilirubin neurotoxicity.


Subject(s)
Bilirubin/chemistry , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Adult , Animals , Animals, Newborn , Apoptosis/drug effects , Cell Survival , Chymotrypsin/chemistry , Cognition/drug effects , Dose-Response Relationship, Drug , Hippocampus/metabolism , Humans , Male , Maze Learning , Memory , Microscopy, Fluorescence , Mitochondrial Membranes/metabolism , Neurons/metabolism , Proteolysis , Rats , Spatial Learning , Ubiquitination/drug effects
16.
Cell Death Dis ; 8(5): e2803, 2017 05 18.
Article in English | MEDLINE | ID: mdl-28518145

ABSTRACT

Cytotoxic chemotherapy agents (e.g., cisplatin) are the first-line drugs to treat non-small cell lung cancer (NSCLC) but NSCLC develops resistance to the agent, limiting therapeutic efficacy. Despite many approaches to identifying the underlying mechanism for cisplatin resistance, there remains a lack of effective targets in the population that resist cisplatin treatment. In this study, we sought to investigate the role of cytoplasmic RAP1, a previously identified positive regulator of NF-κB signaling, in the development of cisplatin resistance in NSCLC cells. We found that the expression of cytoplasmic RAP1 was significantly higher in high-grade NSCLC tissues than in low-grade NSCLC; compared with a normal pulmonary epithelial cell line, the A549 NSCLC cells exhibited more cytoplasmic RAP1 expression as well as increased NF-κB activity; cisplatin treatment resulted in a further increase of cytoplasmic RAP1 in A549 cells; overexpression of RAP1 desensitized the A549 cells to cisplatin, and conversely, RAP1 depletion in the NSCLC cells reduced their proliferation and increased their sensitivity to cisplatin, indicating that RAP1 is required for cell growth and has a key mediating role in the development of cisplatin resistance in NSCLC cells. The RAP1-mediated cisplatin resistance was associated with the activation of NF-κB signaling and the upregulation of the antiapoptosis factor BCL-2. Intriguingly, in the small portion of RAP1-depleted cells that survived cisplatin treatment, no induction of NF-κB activity and BCL-2 expression was observed. Furthermore, in established cisplatin-resistant A549 cells, RAP1 depletion caused BCL2 depletion, caspase activation and dramatic lethality to the cells. Hence, our results demonstrate that the cytoplasmic RAP1-NF-κB-BCL2 axis represents a key pathway to cisplatin resistance in NSCLC cells, identifying RAP1 as a marker and a potential therapeutic target for cisplatin resistance of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cisplatin/therapeutic use , Cytoplasm/metabolism , Drug Resistance, Neoplasm/drug effects , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , Gene Deletion , Humans , Models, Biological , NF-kappa B/metabolism , Neoplasm Grading , Shelterin Complex , Signal Transduction/drug effects , Telomere-Binding Proteins
17.
Oncotarget ; 8(8): 13942-13956, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28086217

ABSTRACT

The ubiquitin-proteasome system (UPS) plays a central role in various cellular processes through selectively degrading proteins involved in critical cellular functions. Targeting UPS has been validated as a novel strategy for treating human cancer, as inhibitors of the 20S proteasome catalytic activity are currently in clinical use for treatment of multiple myeloma and other cancers, and the deubiquitinase activity associated with the proteasome is also a valid target for anticancer agents. Recent studies suggested that zinc pyrithione, an FDA-approved antidandruff agent, may have antitumor activity, but the detailed molecular mechanisms remain unclear. Here we report that zinc pyrithione (ZnPT) targets the proteasome-associated DUBs (USP14 and UCHL5) and inhibits their activities, resulting in a rapid accumulation of protein-ubiquitin conjugates, but without inhibiting the proteolytic activities of 20S proteasomes. Furthermore, ZnPT exhibits cytotoxic effects against various cancer cell lines in vitro, selectively kills bone marrow cells from leukemia patients ex vivo, and efficiently inhibits the growth of lung adenocarcinoma cancer cell xenografts in nude mice. This study has identified zinc pyrithione, an FDA-approved pharmacological agent with potential antitumor properties as a proteasomal DUB inhibitor.


Subject(s)
Antineoplastic Agents/pharmacology , Keratolytic Agents/pharmacology , Neoplasms, Experimental/pathology , Organometallic Compounds/pharmacology , Proteasome Endopeptidase Complex/drug effects , Pyridines/pharmacology , Animals , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Dandruff/drug therapy , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Mice , Mice, Nude , Models, Molecular , Proteasome Inhibitors/pharmacology , Ubiquitin Thiolesterase/drug effects , Ubiquitin Thiolesterase/metabolism , Xenograft Model Antitumor Assays
18.
J Hematol Oncol ; 9(1): 129, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27884201

ABSTRACT

BACKGROUND: Acquired imatinib (IM) resistance is frequently characterized by Bcr-Abl mutations that affect IM binding and kinase inhibition in patients with chronic myelogenous leukemia (CML). Bcr-Abl-T315I mutation is the predominant mechanism of the acquired resistance to IM. Therefore, it is urgent to search for additional approaches and targeting strategies to overcome IM resistance. We recently reported that nickel pyrithione (NiPT) potently inhibits the ubiquitin proteasome system via targeting the 19S proteasome-associated deubiquitinases (UCHL5 and USP14), without effecting on the 20S proteasome. In this present study, we investigated the effect of NiPT, a novel proteasomal deubiquitinase inhibitor, on cell survival or apoptosis in CML cells bearing Bcr-Abl-T315I or wild-type Bcr-Abl. METHODS: Cell viability was examined by MTS assay and trypan blue exclusion staining assay in KBM5, KBM5R, K562, BaF3-p210-WT, BaF3-p210-T315I cells, and CML patients' bone marrow samples treated with NiPT. Cell apoptosis in CML cells was detected with Annexin V-FITC/PI and rhodamine-123 staining followed by fluorescence microscopy and flow cytometry and with western blot analyses for apoptosis-associated proteins. Expression levels of Bcr-Abl in CML cells were analyzed by using western blotting and real-time PCR. The 20S proteasome peptidase activity was measured using specific fluorogenic substrate. Active-site-directed labeling of proteasomal DUBs, as well as the phosphorylation of USP14 was used for evaluating the inhibition of the DUBs activity by NiPT. Mouse xenograft models of KBM5 and KBM5R cells were analyzed, and Bcr-Abl-related proteins and protein biomarkers related to proliferation, differentiation, and adhesion in tumor tissues were detected by western blots and/or immunohistological analyses. RESULTS: NiPT induced apoptosis in CML cells and inhibited the growth of IM-resistant Bcr-Abl-T315I xenografts in nude mice. Mechanistically, NiPT induced decreases in Bcr-Abl proteins, which were associated with downregulation of Bcr-Abl transcription and with the cleavage of Bcr-Abl protein by activated caspases. NiPT-induced ubiquitin proteasome system inhibition induced caspase activation in both IM-resistant and IM-sensitive CML cells, and the caspase activation was required for NiPT-induced Bcr-Abl downregulation and apoptotic cell death. CONCLUSIONS: These findings support that NiPT can overcome IM resistance through both Bcr-Abl-dependent and Bcr-Abl-independent mechanisms, providing potentially a new option for CML treatment.


Subject(s)
Apoptosis/drug effects , Fusion Proteins, bcr-abl/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Pyridines/pharmacology , Thiones/pharmacology , Caspases/drug effects , Caspases/metabolism , Drug Resistance, Neoplasm/drug effects , Heterografts , Humans , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology , Nickel , Proteasome Inhibitors/pharmacology
19.
Biochem Pharmacol ; 116: 22-38, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27381943

ABSTRACT

DNA is the well-known molecular target of current platinum-based anticancer drugs; consequently, their clinical use is severely restricted by their systemic toxicities and drug resistance originating from non-selective DNA damage. Various strategies have been developed to circumvent the shortcomings of platinum-based chemotherapy but the inherent problem remains unsolved. Here we report that platinum pyrithione (PtPT), a chemically well-characterized synthetic complex of platinum, inhibits proteasome function and thereby exhibits greater and more selective cytotoxicity to multiple cancer cells than cisplatin, without showing discernible DNA damage both in vitro and in vivo. Moreover, unlike the classical proteasome inhibitor bortezomib/Velcade which inhibits the proteasome via blocking the peptidase activity of 20S proteasomes, PtPT primarily deactivates 26S proteasome-associated deubiquitinases USP14 and UCHL5. Furthermore, PtPT can selectively induce cytotoxicity and proteasome inhibition in cancer cells from leukemia patients but not peripheral blood mononuclear cells from healthy humans. In nude mice, PtPT also remarkably inhibited tumor xenograft growth, without showing the adverse effects that were induced by cisplatin. Hence, we have discovered a new platinum-based anti-tumor agent PtPT which targets 26S proteasome-associated deubiquitinases rather than DNA in the cell and thereby exerts safer and more potent anti-tumor effects, identifying a highly translatable new platinum-based anti-cancer strategy.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents/therapeutic use , Cisplatin/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Lung Neoplasms/drug therapy , Organoplatinum Compounds/therapeutic use , Proteasome Inhibitors/therapeutic use , Pyridines/therapeutic use , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line , Cells, Cultured , Cisplatin/adverse effects , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Female , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice, Nude , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Organoplatinum Compounds/adverse effects , Organoplatinum Compounds/pharmacology , Proteasome Inhibitors/adverse effects , Proteasome Inhibitors/pharmacology , Pyridines/adverse effects , Pyridines/pharmacology , Specific Pathogen-Free Organisms , Tumor Burden/drug effects , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism , Xenograft Model Antitumor Assays
20.
Sci Rep ; 6: 21565, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26898246

ABSTRACT

MicroRNAs (miRs) play pivotal roles in carcinogenesis and endoplasmic reticulum (ER) that performs the folding, modification and trafficking of proteins targeted to the secretory pathway. Cancer cells often endure ER stress during tumor progression but use the adaptive ER stress response to gain survival advantage. Here we report: (i) A group of miRs, including miR-30b-5p and miR-30c-5p, are upregulated by proteasome inhibitor PS-341 treatment, in HepG2 and MDA-MB-453 cells. (ii) Two representative PS-341-induced miRs: miR-30b-5p and miR-30c-5p are found to promote cell proliferation and anti-apoptosis in both tumor cells. (iii) eIF2α is confirmed as the congenerous target of miR-30b-5p and miR-30c-5p, essential to the anti-apoptotic function of these miRs. (iv) Upregulation of miR-30b-5p or miR-30c-5p, which occurs latter than the increase of phosphorylated eIF2α (p-eIF2α) in the cell under ER stress, suppresses the p-eIF2α/ATF4/CHOP pro-apoptotic pathway. (v) Inhibition of the miR-30b-5p or miR-30c-5p sensitizes the cancer cells to the cytotoxicity of proteasome inhibition. In conclusion, we unravels a new miRs-based mechanism that helps maintain intracellular proteostasis and promote cell survival during ER stress through upregulation of miR-30b-5p and miR-30c-5p which target eIF2α and thereby inhibit the p-eIF2α/ATF4/CHOP pro-apoptotic pathway, identifying miR-30b-5p and miR-30c-5p as potentially new targets for anti-cancer therapies.


Subject(s)
Carcinogenesis/genetics , Eukaryotic Initiation Factor-2/biosynthesis , MicroRNAs/genetics , Neoplasms/genetics , Activating Transcription Factor 4/biosynthesis , Animals , Apoptosis/drug effects , Bortezomib/administration & dosage , Cell Proliferation/drug effects , Cell Survival/drug effects , Endoplasmic Reticulum Stress/genetics , Eukaryotic Initiation Factor-2/genetics , Hep G2 Cells , Humans , MicroRNAs/biosynthesis , Neoplasms/pathology , Proteasome Inhibitors/administration & dosage , Transcription Factor CHOP/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...