Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Heart Assoc ; 10(4): e018756, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33554615

ABSTRACT

Background Chronic vascular disease atherosclerosis starts with an uptake of atherogenic modified low-density lipoproteins (LDLs) by resident macrophages, resulting in formation of arterial fatty streaks and eventually atheromatous plaques. Increased plasma sialic acid levels, increased neuraminidase activity, and reduced sialic acid LDL content have been previously associated with atherosclerosis and coronary artery disease in human patients, but the mechanism underlying this association has not been explored. Methods and Results We tested the hypothesis that neuraminidases contribute to development of atherosclerosis by removing sialic acid residues from glycan chains of the LDL glycoprotein and glycolipids. Atherosclerosis progression was investigated in apolipoprotein E and LDL receptor knockout mice with genetic deficiency of neuraminidases 1, 3, and 4 or those treated with specific neuraminidase inhibitors. We show that desialylation of the LDL glycoprotein, apolipoprotein B 100, by human neuraminidases 1 and 3 increases the uptake of human LDL by human cultured macrophages and by macrophages in aortic root lesions in Apoe-/- mice via asialoglycoprotein receptor 1. Genetic inactivation or pharmacological inhibition of neuraminidases 1 and 3 significantly delays formation of fatty streaks in the aortic root without affecting the plasma cholesterol and LDL levels in Apoe-/- and Ldlr-/- mouse models of atherosclerosis. Conclusions Together, our results suggest that neuraminidases 1 and 3 trigger the initial phase of atherosclerosis and formation of aortic fatty streaks by desialylating LDL and increasing their uptake by resident macrophages.


Subject(s)
Aorta, Abdominal/pathology , Atherosclerosis/metabolism , Coronary Artery Disease/metabolism , Lipoproteins, LDL/metabolism , Macrophages/metabolism , Neuraminidase/metabolism , Animals , Aorta, Abdominal/metabolism , Atherosclerosis/pathology , Biomarkers/metabolism , Cells, Cultured , Coronary Artery Disease/pathology , Disease Models, Animal , Humans , Macrophages/pathology , Mice , Mice, Knockout , Phagocytosis
2.
Mol Metab ; 12: 76-88, 2018 06.
Article in English | MEDLINE | ID: mdl-29735266

ABSTRACT

OBJECTIVES: Neuraminidase 1 (NEU1) cleaves terminal sialic acids of glycoconjugates during lysosomal catabolism. It also modulates the structure and activity of cellular surface receptors affecting diverse pathways. Previously we demonstrated that NEU1 activates the insulin receptor (IR) and that NEU1-deficient CathAS190A-Neo mice (hypomorph of the NEU1 activator protein, cathepsin A/CathA) on a high-fat diet (HFD) develop hyperglycaemia and insulin resistance faster than wild-type animals. The major objective of the current work was to reveal the molecular mechanism by which NEU1 desialylation activates the IR and to test if increase of NEU1 activity in insulin target tissues reverses insulin resistance and glucose intolerance. METHODS: To test if desialylation causes a conformational change in the IR dimer we measured interaction between the receptor subunits by Bioluminescence Resonance Energy Transfer in the HEK293T cells either overexpressing NEU1 or treated with the NEU1 inhibitor. The influence of NEU1 overexpression on insulin resistance was studied in vitro in palmitate-treated HepG2 cells transduced with NEU1-expressing lentivirus and in vivo in C57Bl6 mice treated with HFD and either pharmacological inducer of NEU1, Ambroxol or NEU1-expressing adenovirus. NEU1-deficient CathAS190A-Neo mice were used as a control. RESULTS: By desialylation of IR, NEU1 induced formation of its active dimer leading to insulin signaling. Overexpression of NEU1 in palmitate-treated HepG2 cells restored insulin signaling, suggesting that increased NEU1 levels may reverse insulin resistance. Five-day treatment of glycemic C57Bl6 mice receiving HFD with the activator of the lysosomal gene network, Ambroxol, increased NEU1 expression and activity in muscle tissue, normalized fasting glucose levels, and improved physiological and molecular responses to glucose and insulin. Ambroxol did not improve insulin sensitivity in obese insulin-resistant CathAS190A-Neo mice indicating that the Ambroxol effect is mediated through NEU1 induction. Sustained increase of liver NEU1 activity through adenovirus-based gene transfer failed to attenuate insulin resistance most probably due to negative feedback regulation of IR expression. CONCLUSION: Together our results demonstrate that increase of NEU1 activity in insulin target tissues reverses insulin resistance and glucose intolerance suggesting that a pharmacological modulation of NEU1 activity may be potentially explored for restoring insulin sensitivity and resolving hyperglycemia associated with T2DM.


Subject(s)
Insulin Resistance , Neuraminidase/metabolism , Obesity/metabolism , Receptor, Insulin/metabolism , Ambroxol/pharmacology , Ambroxol/therapeutic use , Animals , HEK293 Cells , Hep G2 Cells , Humans , Liver/drug effects , Liver/metabolism , Mice , Mice, Inbred C57BL , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Neuraminidase/genetics , Obesity/drug therapy
3.
PLoS One ; 9(9): e106320, 2014.
Article in English | MEDLINE | ID: mdl-25222608

ABSTRACT

The removal of sialic acid (Sia) residues from glycoconjugates in vertebrates is mediated by a family of neuraminidases (sialidases) consisting of Neu1, Neu2, Neu3 and Neu4 enzymes. The enzymes play distinct physiological roles, but their ability to discriminate between the types of linkages connecting Sia and adjacent residues and between the identity and arrangement of the underlying sugars has never been systematically studied. Here we analyzed the specificity of neuraminidases by studying the kinetics of hydrolysis of BODIPY-labeled substrates containing common mammalian sialylated oligosaccharides: 3'Sia-LacNAc, 3'SiaLac, SiaLex, SiaLea, SiaLec, 6'SiaLac, and 6'SiaLacNAc. We found significant differences in substrate specificity of the enzymes towards the substrates containing α2,6-linked Sia, which were readily cleaved by Neu3 and Neu1 but not by Neu4 and Neu2. The presence of a branching 2-Fuc inhibited Neu2 and Neu4, but had almost no effect on Neu1 or Neu3. The nature of the sugar residue at the reducing end, either glucose (Glc) or N-acetyl-D-glucosamine (GlcNAc) had only a minor effect on all neuraminidases, whereas core structure (1,3 or 1,4 bond between D-galactose (Gal) and GlcNAc) was found to be important for Neu4 strongly preferring ß3 (core 1) to ß4 (core 2) isomer. Neu3 and Neu4 were in general more active than Neu1 and Neu2, likely due to their preference for hydrophobic substrates. Neu2 and Neu3 were examined by molecular dynamics to identify favorable substrate orientations in the binding sites and interpret the differences in their specificities. Finally, using knockout mouse models, we confirmed that the substrate specificities observed in vitro were recapitulated in enzymes found in mouse brain tissues. Our data for the first time provide evidence for the characteristic substrate preferences of neuraminidases and their ability to discriminate between distinct sialoside targets.


Subject(s)
Neuraminidase/chemistry , Animals , Binding Sites , Brain/enzymology , Hydrolysis , Kinetics , Mice, Knockout , Models, Molecular , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Protein Structure, Tertiary , Substrate Specificity
4.
J Med Chem ; 56(7): 2948-58, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-23530623

ABSTRACT

In the past two decades, human neuraminidases (human sialidases, hNEUs) have been found to be involved in numerous pathways in biology. The development of selective and potent inhibitors of these enzymes will provide critical tools for glycobiology, help to avoid undesired side effects of antivirals, and may reveal new small-molecule therapeutic targets for human cancers. However, because of the high active site homology of the hNEU isoenzymes, little progress in the design and synthesis of selective inhibitors has been realized. Guided by our previous studies of human NEU3 inhibitors, we designed a series of C4,C7-modified analogues of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA) and tested them against the full panel of hNEU isoenzymes (NEU1, NEU2, NEU3, NEU4). We identified inhibitors with up to 38-fold selectivity for NEU3 and 12-fold selectivity for NEU2 over all other isoenzymes. We also identified compounds that targeted NEU2 and NEU3 with similar potency.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Isoenzymes/antagonists & inhibitors , N-Acetylneuraminic Acid/analogs & derivatives , Neuraminidase/antagonists & inhibitors , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , N-Acetylneuraminic Acid/pharmacology , Spectrometry, Mass, Electrospray Ionization
5.
ACS Med Chem Lett ; 4(6): 532-7, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-24900705

ABSTRACT

The human neuraminidase enzymes (hNEU) play important roles in human physiology and pathology. The lack of potent and selective inhibitors toward these enzymes has limited our understanding of their function and the development of therapeutic applications. Here we report the evaluation of a panel of compounds against the four human neuraminidase isoenzymes. Among the compounds tested, we identified the first selective, nanomolar inhibitors of the human neuraminidase 4 enzyme (NEU4). The most potent NEU4 inhibitor (5-acetamido-9-[4-hydroxymethyl[1,2,3]triazol-1-yl]-2,3,5,9-tetradeoxy-d-glycero-d-galacto-2-nonulopyranosonic acid) was found to have an inhibitory constant (K i ) of 30 ± 19 nM and was 500-fold selective for its target over the other hNEU isoenzymes tested in vitro (NEU1, NEU2, and NEU3). This is the first report of any inhibitor of hNEU with nanomolar potency, and this confirms that the 2,3-didehydro-2-deoxy-N-acetylneuraminic acid (DANA) scaffold can be exploited to develop new, potent, and selective inhibitors that target this important family of human enzymes.

6.
J Biol Chem ; 287(34): 28917-31, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-22692207

ABSTRACT

The sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) and its hydroxylated derivative N-glycolylneuraminic acid (Neu5Gc) differ by one oxygen atom. CMP-Neu5Gc is synthesized from CMP-Neu5Ac, with Neu5Gc representing a highly variable fraction of total Sias in various tissues and among different species. The exception may be the brain, where Neu5Ac is abundant and Neu5Gc is reported to be rare. Here, we confirm this unusual pattern and its evolutionary conservation in additional samples from various species, concluding that brain Neu5Gc expression has been maintained at extremely low levels over hundreds of millions of years of vertebrate evolution. Most explanations for this pattern do not require maintaining neural Neu5Gc at such low levels. We hypothesized that resistance of α2-8-linked Neu5Gc to vertebrate sialidases is the detrimental effect requiring the relative absence of Neu5Gc from brain. This linkage is prominent in polysialic acid (polySia), a molecule with critical roles in vertebrate neural development. We show that Neu5Gc is incorporated into neural polySia and does not cause in vitro toxicity. Synthetic polymers of Neu5Ac and Neu5Gc showed that mammalian and bacterial sialidases are much less able to hydrolyze α2-8-linked Neu5Gc at the nonreducing terminus. Notably, this difference was not seen with acid-catalyzed hydrolysis of polySias. Molecular dynamics modeling indicates that differences in the three-dimensional conformation of terminal saccharides may partly explain reduced enzymatic activity. In keeping with this, polymers of N-propionylneuraminic acid are sensitive to sialidases. Resistance of Neu5Gc-containing polySia to sialidases provides a potential explanation for the rarity of Neu5Gc in the vertebrate brain.


Subject(s)
Amino Sugars/metabolism , Brain Chemistry/physiology , Brain/metabolism , Neuraminic Acids/metabolism , Amino Sugars/chemistry , Animals , Bacteria/chemistry , Bacteria/metabolism , Carbohydrate Conformation , Cattle , Dolphins , Elephants , Evolution, Molecular , Hydrolysis , Mice , N-Acetylneuraminic Acid , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Neuraminic Acids/chemistry , Neuraminidase/chemistry , Neuraminidase/metabolism , Pan troglodytes , Rats , Species Specificity , Swine
SELECTION OF CITATIONS
SEARCH DETAIL