Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Int J Nanomedicine, v. 2021, n. 16, p. 7153—7168, out. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3986

ABSTRACT

Purpose: The use of adjuvants can significantly strengthen a vaccine’s efficacy. We sought to explore the immunization efficacy of bacterial outer membrane vesicles (OMVs) displaying the Schistosoma mansoni antigen, SmTSP-2, through a biotin-rhizavidin coupling approach. The rationale is to exploit the nanoparticulate structure and the adjuvant properties of OMVs to induce a robust antigen-specific immune response, in light of developing new vaccines against S. mansoni. Materials and Methods: OMVs were obtained from Neisseria lactamica and conjugated with biotin. The recombinant SmTSP-2 in fusion with the biotin-binding protein rhizavidin (rRzvSmTSP-2) was produced in E. coli and coupled to biotinylated OMVs to generate an OMV complex displaying SmTSP-2 on the membrane surface (OMV:rSmTSP-2). Transmission electron microscopy (TEM) and dynamic light scattering analysis were used to determine particle charge and size. The immunogenicity of the vaccine complex was evaluated in C57BL/6 mice. Results: The rRzvSmTSP-2 protein was successfully coupled to biotinylated OMVs and purified by size-exclusion chromatography. The OMV:rSmTSP-2 nanoparticles showed an average size of 200 nm, with zeta potential around – 28 mV. Mouse Bone Marrow Dendritic Cells were activated by the nanoparticles as determined by increased expression of the co-stimulatory molecules CD40 and CD86, and the proinflammatory cytokines (TNF-α, IL-6 and IL-12) or IL-10. Splenocytes of mice immunized with OMV:rSmTSP-2 nanoparticles reacted to an in vitro challenge with SmTSP-2 with an increased production of IL-6, IL-10 and IL-17 and displayed a higher number of CD4+ and CD8+ T lymphocytes expressing IFN-γ, IL-4 and IL-2, compared to mice immunized with the antigen alone. Immunization of mice with OMV:rSmTSP-2 induced a 100-fold increase in specific anti-SmTSP-2 IgG antibody titers, as compared to the group receiving the recombinant rSmTSP-2 protein alone or even co-administered with unconjugated OMV. Conclusion: Our results demonstrate that the SmTSP-2 antigen coupled with OMVs is highly immunogenic in mice, supporting the potential effectiveness of this platform for improved antigen delivery in novel vaccine strategies.

2.
Clin. Vaccine Immunol. ; 24(8): e00118-17, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15095

ABSTRACT

Current pneumococcal vaccines are composed of bacterial polysaccharides as antigens, plain or conjugated to carrier proteins. While efficacious against vaccine serotypes, epidemiologic data show an increasing incidence of infections caused by nonvaccine serotypes of Streptococcus pneumoniae. The use of pneumococcal surface protein A (PspA) as a carrier protein in a conjugate vaccine could help prevent serotype replacement by increasing vaccine coverage and reducing selective pressure of S. pneumoniae serotypes. PspA is present in all pneumococcal strains, is highly immunogenic, and is known to induce protective antibodies. Based on its sequence, PspA has been classified into three families and six clades. A PspA fragment derived from family 2, clade 4 (PspA4Pro), was shown to generate antibodies with a broad range of cross-reactivity, across clades and families. Here, PspA4Pro was modified and conjugated to capsular polysaccharide serotype 14 (PS14). We investigated the impact of conjugation on the immune response induced to PspA4Pro and PS14. Mice immunized with the PS14-mPspA4Pro conjugate produced higher titers of anti-PS14 antibodies than the animals that received coadministered antigens. The conjugate induced antibodies with opsonophagocytic activity against PS14-carrying strains, as well as against a panel of strains bearing PspAs from five clades (encompassing families 1 and 2) bearing a non-PS14 serotype. Furthermore, mice immunized with PS14-mPspA4Pro were protected against nasal colonization with a nonrelated S. pneumoniae strain bearing PspA from clade 1, serotype 6B. These results demonstrate that the cross-reactivity mediated by PspA4Pro is retained following conjugation, supporting the use of PspA4 as a carrier protein in order to enhance pneumococcal vaccine coverage and encourage its further investigation as a candidate in future vaccine designs

3.
Glycoconj J ; 31(3): 259-69, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24658681

ABSTRACT

Conjugate vaccines are being widely used since their introduction. Nowadays the interest in these vaccines is still growing and new antigens and conjugate chemistry are being studied and developed. Pneumococcal surface protein A (PspA) is one of the most studied pneumococcal antigens and is an important vaccine candidate. One approach to broaden the conjugate vaccine coverage could be the conjugation of the polysaccharide to a pneumococcal protein such as PspA. Previous results have shown that conjugated recombinant fragment of PspA (rPspA) not only maintained but also in some conjugates improved the induction of protective antibodies raised against the protein carrier. We describe here a characterization study to identify the domains of Streptococcus pneumoniae recombinant PspA (rPspA), from family 1 clade 1 and family 2 clade 3, involved in the conjugation with serotype 6B capsular polysaccharide.


Subject(s)
Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Polysaccharides, Bacterial/immunology , Amino Acid Sequence , Bacterial Capsules/immunology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Glycosylation , Hydrolysis , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Pneumococcal Vaccines , Polysaccharides, Bacterial/chemistry , Spectrometry, Mass, Electrospray Ionization/methods
6.
Appl Microbiol Biotechnol ; 94(3): 683-94, 2012 May.
Article in English | MEDLINE | ID: mdl-22075630

ABSTRACT

Pneumococcal surface protein A (PspA) is essential for Streptococcus pneumoniae virulence and its use either as a novel pneumococcal vaccine or as carrier in a conjugate vaccine would improve the protection and the coverage of the vaccine. Within this context, the development of scalable production and purification processes of His-tagged recombinant fragment of PspA from clade 3 (rfPspA3) in Escherichia coli BL21(DE3) was proposed. Fed-batch production was performed using chemically defined medium with glucose or glycerol as carbon source. Although the use of glycerol led to lower acetate production, the concentration of cells were similar at the end of both fed-batches, reaching high cell density of E. coli (62 g dry cell weight/L), and the rfPspA3 production was higher with glucose (3.48 g/L) than with glycerol (2.97 g/L). A study of downstream process was also carried out, including cell disruption and clarification steps. Normally, the first chromatography step for purification of His-tagged proteins is metal affinity. However, the purification design using anion exchange followed by metal affinity gave better results for rfPspA3 than the opposite sequence. Performing this new design of chromatography steps, rfPspA3 was obtained with 95.5% and 75.9% purity, respectively, from glucose and glycerol culture. Finally, after cation exchange chromatography, rfPspA3 purity reached 96.5% and 90.6%, respectively, from glucose and glycerol culture, and the protein was shown to have the expected alpha-helix secondary structure.


Subject(s)
Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Carbon/metabolism , Chromatography/methods , Escherichia coli/growth & development , Bacterial Proteins/genetics , Biotechnology/methods , Culture Media/chemistry , Escherichia coli/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Streptococcus pneumoniae/genetics
9.
Plos negl. trop. dis ; 5(11): 1-6, 2011.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1065517

ABSTRACT

A recent review has discussed the economic value of vaccine for developed countries. The situation is quite different in developing countries, and we examine the situation in Brazil. Vaccines are of fundamental importance for the control of infectious diseases, especially among the population that lives in poor sanitary conditions. Also, vaccines can generate herd effects that result in protection even among those who have not been vaccinated, which can be of particular value to poor individuals who are not reached by health services. In appreciation of this importance, various international agencies, including the Pan American Health Organization (PAHO) and UNICEF, undertake large-scale procurement of vaccines for supply to developing countries. This scale of procurement has allowed these agencies to obtain very low prices. In Brazil, the Constitution includes the right to health care, which has led the government to formulate a goal of universal vaccination free of charge, a cost-effective measure against many important infectious diseases. Universal vaccination is a fundamental role of the federal, state, and municipal governments through the current unified public health care system (Sistema Único de Sáude - SUS).


Subject(s)
Male , Female , Humans , Vaccines/economics , Vaccines/supply & distribution
12.
J Ind Microbiol Biotechnol ; 35(11): 1217-22, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18712545

ABSTRACT

Haemophilus influenzae type b, an encapsulated bacterium, causes meningitis in infants worldwide. The capsular polysaccharide conjugated to a carrier protein is effective in the prevention of such infections. The traditional purification process of polysaccharide from bacterial cultures for vaccine production is based on several selective precipitations with solvents such as: ethanol, phenol, and cationic detergents. The separations of solid and liquid phases are based on continuous centrifugation in explosion proof installations. The lipopolysaccharides are separated by ultracentrifugation. A simple and efficient method that can easily be scaled-up was developed for purification of polysaccharides. The ethanol precipitation was reduced to only two steps. The phenol treatment was substituted by ultrafiltration and enzymatic digestion. Lipopolysaccharide was removed by ultrafiltration together with addition of detergent and chelating agent.


Subject(s)
Centrifugation/methods , Haemophilus influenzae type b/chemistry , Polysaccharides, Bacterial/isolation & purification , Ultrafiltration/methods , Bioreactors/microbiology , Chemical Precipitation , Ethanol/chemistry , Haemophilus influenzae type b/metabolism , Lipopolysaccharides/chemistry , Lipopolysaccharides/isolation & purification , Polysaccharides, Bacterial/chemistry
13.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1064265

ABSTRACT

Haemophilus inXuenzae type b, an encapsulatedbacterium, causes meningitis in infants worldwide. The capsularpolysaccharide conjugated to a carrier protein is eVectivein the prevention of such infections. The traditional puriWcationprocess of polysaccharide from bacterial cultures for vaccineproduction is based on several selective precipitationswith solvents such as: ethanol, phenol, and cationic detergents.The separations of solid and liquid phases are based oncontinuous centrifugation in explosion proof installations. Thelipopolysaccharides are separated by ultracentrifugation. Asimple and eYcient method that can easily be scaled-up wasdeveloped for puriWcation of polysaccharides. The ethanolprecipitation was reduced to only two steps. The phenol treatmentwas substituted by ultraWltration and enzymatic digestion.Lipopolysaccharide was removed by ultraWltrationtogether with addition of detergent and chelating agent.


Subject(s)
Male , Female , Humans , Child , Haemophilus influenzae type b/immunology , Meningitis, Haemophilus , Meningococcal Vaccines
16.
J Clin Lab Anal ; 21(3): p.201-6, 2007.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib11313
SELECTION OF CITATIONS
SEARCH DETAIL
...