Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2146, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37081049

ABSTRACT

Animal tolerance towards humans can be a key factor facilitating wildlife-human coexistence, yet traits predicting its direction and magnitude across tropical animals are poorly known. Using 10,249 observations for 842 bird species inhabiting open tropical ecosystems in Africa, South America, and Australia, we find that avian tolerance towards humans was lower (i.e., escape distance was longer) in rural rather than urban populations and in populations exposed to lower human disturbance (measured as human footprint index). In addition, larger species and species with larger clutches and enhanced flight ability are less tolerant to human approaches and escape distances increase when birds were approached during the wet season compared to the dry season and from longer starting distances. Identification of key factors affecting animal tolerance towards humans across large spatial and taxonomic scales may help us to better understand and predict the patterns of species distributions in the Anthropocene.


Subject(s)
Animals, Wild , Behavior, Animal , Birds , Ecosystem , Human-Animal Interaction , Animals , Humans , Animals, Wild/physiology , Animals, Wild/psychology , Australia , Birds/physiology , Urban Population , Africa , South America , Rural Population , Tropical Climate
2.
Ecol Evol ; 11(11): 6415-6426, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34141228

ABSTRACT

Worldwide bees provide an important ecosystem service of plant pollination. Climate change and land-use changes are among drivers threatening bee survival with mounting evidence of species decline and extinction. In developing countries, rural areas constitute a significant proportion of the country's land, but information is lacking on how different habitat types and weather patterns in these areas influence bee populations.This study investigated how weather variables and habitat-related factors influence the abundance, diversity, and distribution of bees across seasons in a farming rural area of Zimbabwe. Bees were systematically sampled in five habitat types (natural woodlots, pastures, homesteads, fields, and gardens) recording ground cover, grass height, flower abundance and types, tree abundance and recorded elevation, temperature, light intensity, wind speed, wind direction, and humidity. Zero-inflated models, censored regression models, and PCAs were used to understand the influence of explanatory variables on bee community composition, abundance, and diversity.Bee abundance was positively influenced by the number of plant species in flower (p < .0001). Bee abundance increased with increasing temperatures up to 28.5°C, but beyond this, temperature was negatively associated with bee abundance. Increasing wind speeds marginally decreased probability of finding bees.Bee diversity was highest in fields, homesteads, and natural woodlots compared with other habitats, and the contributions of the genus Apis were disproportionately high across all habitats. The genus Megachile was mostly associated with homesteads, while Nomia was associated with grasslands.Synthesis and applications. Our study suggests that some bee species could become more proliferous in certain habitats, thus compromising diversity and consequently ecosystem services. These results highlight the importance of setting aside bee-friendly habitats that can be refuge sites for species susceptible to land-use changes.

3.
Front Vet Sci ; 8: 601386, 2021.
Article in English | MEDLINE | ID: mdl-33681322

ABSTRACT

Edible insects have gained popularity as alternative food resources in the face of climate change and increasing carbon and environmental footprints associated with conventional agricultural production. Among the positive attributes that make edible insects suitable as food and feed substrates include rapid reproduction, high energy conversion efficiency, wide distribution, diversity, reduced greenhouses gases and ammonia emissions, possibility to reduce waste and high nutritional composition. In Sub-Saharan Africa, considerable scientific data exist on use of insects as food and livestock feed. However, coherent policies regarding safety, sustainability, trade and regulation of insects as food and animal feed are lacking. The benefits associated with edible insects are likely to accrue in Sub-Saharan Africa through use of a combination of approaches such as ensured sustainable utilization of edible insects in the wild, preservation of traditional conservation, harvesting and consumption practices, development of captive mass production schemes and strengthening robust value chains to incentivise indigenous participants. Collectively these approaches are referred to as the steward and use of insects as food and animal feed. This paper examines the policy frameworks that exist to support the use of edible insects as food and feed on the African continent. This investigation employed a literature review focussing on national policies in selected African countries to assess the relevance to edible insects. Using a baseline of more than 10 edible insect species consumed, 10 country cases in Sub-Saharan Africa were used to support our in-depth examination of the policy situation that may support good stewardship of edible insects as food and feed. Focus on how policies encompassing biodiversity, natural resources, culture, education, research, technology development, trade, health and nutrition and how that could be improved to support inclusivity of edible insects is discussed. We conclude by proposing a pathway that may accelerate recognition and valorisation of edible insects as important food and feed resources in Sub-Saharan Africa including improving policies to support good stewardship of these resources for sustainability.

4.
Oecologia ; 169(2): 419-30, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22200851

ABSTRACT

Vigilance allows individuals to escape from predators, but it also reduces time for other activities which determine fitness, in particular resource acquisition. The principles determining how prey trade time between the detection of predators and food acquisition are not fully understood, particularly in herbivores because of many potential confounding factors (such as group size), and the ability of these animals to be vigilant while handling food. We designed a fertilization experiment to manipulate the quality of resources, and compared awareness (distinguishing apprehensive foraging and vigilance) of wild impalas (Aepyceros melampus) foraging on patches of different grass height and quality in a wilderness area with a full community of predators. While handling food, these animals can allocate time to other functions. The impalas were aware of their environment less often when on good food patches and when the grass was short. The animals spent more time in apprehensive foraging when grass was tall, and no other variable affected apprehensive behavior. The probability of exhibiting a vigilance posture decreased with group size. The interaction between grass height and patch enrichment also affected the time spent in vigilance, suggesting that resource quality was the main driver when visibility is good, and the risk of predation the main driver when the risk is high. We discuss various possible mechanisms underlying the perception of predation risk: foraging strategy, opportunities for scrounging, and inter-individual interference. Overall, this experiment shows that improving patch quality modifies the trade-off between vigilance and foraging in favor of feeding, but vigilance remains ultimately driven by the visibility of predators by foragers within their feeding patches.


Subject(s)
Behavior, Animal , Herbivory , Predatory Behavior , Ruminants , Animals , Ecosystem , Food Chain , Poaceae , Probability , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...