Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Steroids ; 63(1): 37-43, 1998 Jan.
Article in English | MEDLINE | ID: mdl-9437793

ABSTRACT

It is generally accepted that the anti-inflammatory effect of glucocorticosteroids cannot be separated from their adverse effects at the receptor level. However, modification of the pharmacokinetics through structural alterations could provide steroids with a better therapeutic index than those currently used. Thus, new 16 alpha,17 alpha-acetals between butyraldehyde and 6 alpha-fluoro- or 6 alpha,9 alpha-difluoro-16 alpha-hydroxycortisol were synthesized and studied. Acetalization of the corresponding 16 alpha,17 alpha-diols or transacetalization of their 16 alpha,17 alpha-acetonides in dioxane produced mixtures of C-22 epimers, which were resolved by preparative chromatography. Alternatively, an efficient method was used to produce the 22R-epimer stereoselectively through performing the acetalization and transacetalization in a hydrocarbon with an inert material present. The C-22 configuration of (22R)-6 alpha,9 alpha-difluoro-11 beta,21-dihydroxy-16 alpha,17 alpha-propylmethylenedioxypregn-4-ene-3,20-dione was unambiguously established by single crystal X-ray diffraction. The present compounds, especially the 22R-epimer just mentioned, bind to the rat thymus glucocorticoid receptor with high potency. The C-22 epimers of the 6 alpha,9 alpha-difluoro derivatives showed a 10-fold higher biotransformation rate than the budesonide 22R-epimer when incubated with human liver S9 subcellular fraction. The high receptor affinity in combination with the high biotransformation rate indicates that (22R)-6 alpha,9 alpha-difluoro-11 beta,21-dihydroxy-16 alpha,17 alpha-propylmethylenedioxypregn-4-ene-3,20-dione may be an improved 16 alpha,17 alpha-acetal glucocorticosteroid for therapy of inflammatory diseases, in which the mucous membranes are involved, such as those in the intestinal tract as well in the respiratory tract.


Subject(s)
Diflucortolone/analogs & derivatives , Glucocorticoids/chemical synthesis , Glucocorticoids/pharmacokinetics , Animals , Biotransformation , Cytosol/metabolism , Diflucortolone/chemical synthesis , Diflucortolone/pharmacokinetics , Diflucortolone/pharmacology , Glucocorticoids/pharmacology , Humans , Male , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Models, Molecular , Rats , Rats, Sprague-Dawley , Receptors, Glucocorticoid/drug effects , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL