Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Int. microbiol ; 27(1): 227-238, Feb. 2024. graf, tab
Article in English | IBECS | ID: ibc-230256

ABSTRACT

In this study, seven strains of Limosilactobacillus fermentum were isolated from an infant fecal sample and characterized using in vitro studies. Lactobacillus rhamnosus GG was used as a comparison because it is a well-documented commercial probiotic. The isolates were tested for attributes such as acid and phenol tolerance, bile salt hydrolase (BSH) activity, and antibiotic sensitivity. One isolate, L. fermentum FS-10, displayed enhanced cell surface hydrophobicity (> 85%) and mucin adhesion. Mucin-binding helps colonization in the gut. The immunomodulatory property of L. fermentum FS-10 was evaluated by determining the modulation of pro- and anti-inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-10, and nitric oxide (NO) in human acute monocytic leukemia (THP-1) cells under inflammatory conditions induced by lipopolysaccharide (LPS). L. fermentum FS-10 potently downregulated the expression of TNF-α and nitric oxide and upregulated IL-10 levels, indicating an anti-inflammatory response. Safety assessment of the strain revealed the absence of genes for virulence factors, toxin production, and antibiotic resistance, potentiating application as a probiotic strain.(AU)


Subject(s)
Humans , Male , Female , Child , Coliforms , Feces/microbiology , Probiotics , Anti-Inflammatory Agents , Tumor Necrosis Factor-alpha , Microbiology , Microbiological Techniques , Mucins , Nitric Oxide
2.
Int Microbiol ; 27(1): 227-238, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37269431

ABSTRACT

In this study, seven strains of Limosilactobacillus fermentum were isolated from an infant fecal sample and characterized using in vitro studies. Lactobacillus rhamnosus GG was used as a comparison because it is a well-documented commercial probiotic. The isolates were tested for attributes such as acid and phenol tolerance, bile salt hydrolase (BSH) activity, and antibiotic sensitivity. One isolate, L. fermentum FS-10, displayed enhanced cell surface hydrophobicity (> 85%) and mucin adhesion. Mucin-binding helps colonization in the gut. The immunomodulatory property of L. fermentum FS-10 was evaluated by determining the modulation of pro- and anti-inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-10, and nitric oxide (NO) in human acute monocytic leukemia (THP-1) cells under inflammatory conditions induced by lipopolysaccharide (LPS). L. fermentum FS-10 potently downregulated the expression of TNF-α and nitric oxide and upregulated IL-10 levels, indicating an anti-inflammatory response. Safety assessment of the strain revealed the absence of genes for virulence factors, toxin production, and antibiotic resistance, potentiating application as a probiotic strain.


Subject(s)
Limosilactobacillus fermentum , Probiotics , Infant , Humans , Tumor Necrosis Factor-alpha , Nitric Oxide , Anti-Inflammatory Agents/pharmacology , Mucins , Probiotics/metabolism
3.
FEMS Microbiol Lett ; 365(22)2018 11 01.
Article in English | MEDLINE | ID: mdl-30295732

ABSTRACT

Poly-γ-glutamic acid (PGA) is biosynthesized by various Bacillus species through PGA synthetase, encoded by the PGA operon comprised of the ywsC and ywtABC genes. Due to the minimal available knowledge, understanding the expression pattern of PGA operon genes is pivotal. In this study, the effect of glucose and glutamic acid on the global gene expression profile of Bacillus subtilis Natto3 was investigated using high throughput microarray, with an emphasis on the PGA operon and genes influencing PGA production. Two treatment groups (set1-in the presence of glutamic acid and set2-in the presence of glutamic acid + glucose) were analyzed against the control (in the presence of glucose). In the microarray, both the groups showed a trend of up-regulation for ywsC and ywtA genes (log2 fold change of 0.55, P = 0.0194, 0.92, P = 0.0069 in set1 and 0.78, P = 0.0023, 0.59, P = 0.0172 in set2, respectively) and down-regulation of ywtB and ywtC genes (log2 fold change of -1.83, P = 0.0001, -1.42, P = 0.0017 in set1 and -1.52, P = 0.0012, -0.55, P = 0.1112 in set2, respectively), supporting the indispensability of the ywsC and ywtA genes in PGA production. Interestingly, the ywtB and ywtC genes, belonging to the same operon, were down-regulated in both the conditions (set1 and set2). To the best of our knowledge, this expression pattern of PGA operon genes is a unique observation.


Subject(s)
Bacillus subtilis/genetics , Gene Expression Regulation, Bacterial/drug effects , Glutamic Acid/pharmacology , Operon/drug effects , Peptide Synthases/genetics , Polyglutamic Acid/analogs & derivatives , Bacillus subtilis/drug effects , Bacillus subtilis/enzymology , Bacterial Proteins/genetics , Down-Regulation/drug effects , Glucose/pharmacology , Oligonucleotide Array Sequence Analysis , Polyglutamic Acid/biosynthesis , Polyglutamic Acid/genetics , Up-Regulation/drug effects
4.
Appl Biochem Biotechnol ; 185(1): 270-288, 2018 May.
Article in English | MEDLINE | ID: mdl-29134509

ABSTRACT

γ-Polyglutamic acid (γ-PGA) is a biosynthetic outcome of glutamic acid polymerization by microbes. In the current study, we have isolated Bacillus methylotrophicus on solid differential media containing methylene blue. This is the first report mentioning the use of methylene blue to distinguish the monomeric and polymeric form of glutamic acid in the liquid medium using UV-Vis spectrophotometer. Our method can simplify the analytical process of γ-PGA confirmation using the aforementioned studies. This screening protocol is sensitive to the detection of γ-PGA quantities as low as 3 µg/mL; thus, the potent producers can be effectively screened. Furthermore, we have carried out process optimization of the present strain for γ-PGA production wherein we could obtain 1.4-fold improvement in the yield with respect to utilization of carbon source and 2.6-fold increase with respect to nitrogen source under submerged fermentation at a shake flask level. We have shown an increase in γ-PGA titer from 1.5 to 36 g/L using mannitol, monosodium glutamate, peptone, and tween 20.


Subject(s)
Bacillus/classification , Bacillus/growth & development , Fermentation , Polyglutamic Acid/analysis , Polyglutamic Acid/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...