Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Sci Rep ; 10(1): 9255, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32518313

ABSTRACT

Human milk provides the infant with the essential nutritive and non-nutritive factors required for health, growth and development. The human milk lipidome is complex, but comprises predominantly triacylglycerides. Historically, the fatty acid profile of the entire human milk lipidome has been investigated, and many relationships have been identified between infant health and fatty acids. Most of these fatty acids are, however, delivered to the infant as triacylglycerides. Using liquid chromatography-ion mobility-mass spectrometry, the objective of this study was to characterise the triacylglyceride profile of human milk and elucidate relationships between the triacylglyceride profile and infant outcomes in a cohort of 10 exclusively breastfeeding woman-infant dyads. 205 triacylglycerides were identified, including 98 previously not reported in human milk. The dose of specific triacylglycerides differed in relation to infant health, such as lauric acid containing TAGs, which were delivered in significantly higher dose to healthy infants compared to unwell infants.


Subject(s)
Lipidomics/methods , Mass Spectrometry/methods , Milk, Human/chemistry , Triglycerides/analysis , Adult , Breast Feeding , Chromatography, Liquid , Eating , Female , Humans , Infant , Male , Workflow
2.
J Vis Exp ; (157)2020 03 13.
Article in English | MEDLINE | ID: mdl-32225158

ABSTRACT

Understanding the interactions between genes, the environment and management in agricultural practice could allow more accurate prediction and management of product yield and quality. Metabolomics data provides a read-out of these interactions at a given moment in time and is informative of an organism's biochemical status. Further, individual metabolites or panels of metabolites can be used as precise biomarkers for yield and quality prediction and management. The plant metabolome is predicted to contain thousands of small molecules with varied physicochemical properties that provide an opportunity for a biochemical insight into physiological traits and biomarker discovery. To exploit this, a key aim for metabolomics researchers is to capture as much of the physicochemical diversity as possible within a single analysis. Here we present a liquid chromatography-mass spectrometry-based untargeted metabolomics method for the analysis of field-grown wheat grain. The method uses the liquid chromatograph quaternary solvent manager to introduce a third mobile phase and combines a traditional reversed-phase gradient with a lipid-amenable gradient. Grain preparation, metabolite extraction, instrumental analysis and data processing workflows are described in detail. Good mass accuracy and signal reproducibility were observed, and the method yielded approximately 500 biologically relevant features per ionization mode. Further, significantly different metabolite and lipid feature signals between wheat varieties were determined.


Subject(s)
Chromatography, Liquid/methods , Mass Spectrometry/methods , Metabolomics/methods , Triticum/chemistry , Reproducibility of Results
3.
J Chromatogr A ; 1611: 460597, 2020 Jan 25.
Article in English | MEDLINE | ID: mdl-31619360

ABSTRACT

The incorporation of ion mobility (IM) into LC-MS analysis has been demonstrated to result in the generation of superior quality MS and MS/MS spectral data as well as providing enhanced resolution in the IM dimension based on lipid class. Here a sub 4 min microbore LC-ion mobility-accurate mass MS (LC-IM-MS) method has been developed for the rapid, profiling of lipids in biological fluids. The method was scaled directly from a conventional, 12  min, LC-MS analysis maintaining the chromatographic performance and lipid separation observed in the longer methodology giving a 75% saving in mobile phase consumption and analysis time. Because of the additional dimension of separation provided by IM, improvements in mass spectral quality from the increased resolution of co-eluting species were also seen when compared to the same separation without IM, thus aiding the identification of target lipids. When applied to human plasma samples some 5037 (positive ESI) and 2020 (negative ESI) mass/retention time features were detected following adduct deconvolution and, of these, 3727 and 800 of those present in the pooled plasma QC samples had a CV of below 30% for positive and negative ESI modes respectively. The method was applied to the analysis of a pilot set of commercially sourced breast cancer plasma samples enabling the differentiation of samples from healthy controls and patients based on their lipid phenotypes. Analysis of the resulting data showed that phosphatidylcholines, triglycerides and diglycerides exhibited lower expression and phosphatidylserine showed increased expression in the breast cancer samples compared to those of healthy subjects. The coefficients of variation, determined by reference to the QC data, for all of the features identified as potential markers of disease, were 6% or less.


Subject(s)
Chromatography, High Pressure Liquid/methods , Lipids/blood , Tandem Mass Spectrometry/methods , Case-Control Studies , Discriminant Analysis , Female , Humans , Ion Mobility Spectrometry , Least-Squares Analysis , Metabolome , Phosphatidylcholines , Principal Component Analysis
4.
Sci Rep ; 9(1): 19400, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31852911

ABSTRACT

Hepcidins are an evolutionarily conserved class of liver-expressed peptide, from which the twenty-five amino acid hormone, hepcidin-25 (herein hepcidin), has gained significant notoriety as the master regulator of iron homeostasis in mammals. Hepcidin maintains iron homeostasis by controlling the dietary absorption of iron and the mechanisms of recycling cellular iron stores. With the physiological significance of this hormone well established, it has emerged as an informative biomarker. In a comparison of the genome, transcriptome and peptidome of Canis lupis familiaris, we reveal the size of the hepcidin peptide in the canine, previous reports of which were contradictory to the evolutionary conservation predicted by genome annotation. Here, measurement of the peptide by mass spectrometry, following isolation from greyhound blood serum, revealed an amino acid sequence and peptide mass, differing from all accounts to date, yet demonstrating perfect sequence identity to that of the greater Canidae lineage of the Carnivora. Importantly, in the greyhound, the measured hepcidin peptide showed a similar temporal pattern to total serum iron, consistent with our understanding of hepcidin regulating iron homeostasis, in agreement with human diagnostics, and providing added translational evidence of the measured peptide being the iron regulatory hormone of the Canidae.


Subject(s)
Evolution, Molecular , Hepcidins/genetics , Iron/metabolism , Amino Acid Sequence , Animals , Biomarkers/metabolism , Dogs , Hepcidins/metabolism , Homeostasis/genetics , Humans , Mammals
5.
Methods Mol Biol ; 1978: 3-12, 2019.
Article in English | MEDLINE | ID: mdl-31119653

ABSTRACT

Metabolomics is an analytical technique that investigates the small molecules present within a biological system. Metabolomics of cultured cells allows profiling of the metabolic chemicals involved in a cell type-specific system and the response of that metabolome to external challenges, such as change in environment or exposure to drugs or toxins. The numerous benefits of in vitro metabolomics include a much greater control of external variables and reduced ethical concerns. There is potential for metabolomics of mammalian cells to uncover new information on mechanisms of action for drugs or toxins or to provide a more sensitive, human-specific early risk assessment in drug development or toxicology investigations. One way to achieve stronger biological outcomes from metabolomic data is via the use of these mammalian cultured cell models, particularly in a high-throughput context. With the sensitivity and quantity of data that metabolomics is able to provide, it is important to ensure that the sampling techniques have minimal interference when it comes to interpretation of any observed shifts in the metabolite profile. Here we describe a sampling procedure designed to ensure that the effects seen in metabolomic analyses are explained fully by the experimental factor and not other routine culture-specific activities.


Subject(s)
Cell Adhesion/genetics , Metabolome/genetics , Metabolomics/methods , Specimen Handling , Animals , Cell Line , Chromatography, Liquid , Humans , Mammals
6.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1118-1119: 25-32, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-31005771

ABSTRACT

Polycystic kidney disease (PKD) encompasses a spectrum of inherited disorders that lead to end-stage renal disease (ESRD). There is no cure for PKD and current treatment options are limited to renal replacement therapy and transplantation. A better understanding of the pathobiology of PKD is needed for the development of new, less invasive treatments. The Lewis Polycystic Kidney (LPK) rat phenotype has been characterized and classified as a model of nephronophthisis (NPHP9, caused by mutation of the Nek8 gene) for which polycystic kidneys are one of the main pathologic features. The aim of this study was to use a GC-MS-based untargeted metabolomics approach to determine key biochemical changes in kidney and liver tissue of the LPK rat. Tissues from 16-week old LPK (n = 10) and Lewis age- and sex-matched control animals (n = 11) were used. Principal component analysis (PCA) distinguished signal corrected metabolite profiles from Lewis and LPK rats for kidney (PC-1 77%) and liver (PC-1 46%) tissue. There were marked differences in the metabolite profiles of the kidney tissues with 122 deconvoluted features significantly different between the LPK and Lewis strains. The metabolite profiles were less marked between strains for liver samples with 30 features significantly different. Five biochemical pathways showed three or more significantly altered metabolites: transcription/translation, arginine and proline metabolism, alpha-linolenic and linoleic acid metabolism, the citric acid cycle, and the urea cycle. The results of this study validate and complement the current literature and are consistent with the understood pathobiology of PKD.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Kidney/metabolism , Liver/metabolism , Metabolomics/methods , Polycystic Kidney Diseases/metabolism , Amino Acids/analysis , Amino Acids/metabolism , Animals , Biomarkers/analysis , Biomarkers/metabolism , Female , Male , Metabolome/physiology , Rats , Reproducibility of Results
7.
Metabolites ; 9(2)2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30769897

ABSTRACT

Diseases of the kidney are difficult to diagnose and treat. This review summarises the definition, cause, epidemiology and treatment of some of these diseases including chronic kidney disease, diabetic nephropathy, acute kidney injury, kidney cancer, kidney transplantation and polycystic kidney diseases. Numerous studies have adopted a metabolomics approach to uncover new small molecule biomarkers of kidney diseases to improve specificity and sensitivity of diagnosis and to uncover biochemical mechanisms that may elucidate the cause and progression of these diseases. This work includes a description of mass spectrometry-based metabolomics approaches, including some of the currently available tools, and emphasises findings from metabolomics studies of kidney diseases. We have included a varied selection of studies (disease, model, sample number, analytical platform) and focused on metabolites which were commonly reported as discriminating features between kidney disease and a control. These metabolites are likely to be robust indicators of kidney disease processes, and therefore potential biomarkers, warranting further investigation.

8.
Exp Physiol ; 104(1): 81-92, 2019 01.
Article in English | MEDLINE | ID: mdl-30311980

ABSTRACT

NEW FINDINGS: What is the central question of this study? Does 14 days of live-high, train-low simulated altitude alter an individual's metabolomic/metabolic profile? What is the main finding and its importance? This study demonstrated that ∼200 h of moderate simulated altitude exposure resulted in greater variance in measured metabolites between subject than within subject, which indicates individual variability during the adaptive phase to altitude exposure. In addition, metabolomics results indicate that altitude alters multiple metabolic pathways, and the time course of these pathways is different over 14 days of altitude exposure. These findings support previous literature and provide new information on the acute adaptation response to altitude. ABSTRACT: The purpose of this study was to determine the influence of 14 days of normobaric hypoxic simulated altitude exposure at 3000 m on the human plasma metabolomic profile. For 14 days, 10 well-trained endurance runners (six men and four women; 29 ± 7 years of age) lived at 3000 m simulated altitude, accumulating 196.4 ± 25.6 h of hypoxic exposure, and trained at ∼600 m. Resting plasma samples were collected at baseline and on days 3 and 14 of altitude exposure and stored at -80°C. Plasma samples were analysed using liquid chromatography-high-resolution mass spectrometry to construct a metabolite profile of altitude exposure. Mass spectrometry of plasma identified 36 metabolites, of which eight were statistically significant (false discovery rate probability 0.1) from baseline to either day 3 or day 14. Specifically, changes in plasma metabolites relating to amino acid metabolism (tyrosine and proline), glycolysis (adenosine) and purine metabolism (adenosine) were observed during altitude exposure. Principal component canonical variate analysis showed significant discrimination between group means (P < 0.05), with canonical variate 1 describing a non-linear recovery trajectory from baseline to day 3 and then back to baseline by day 14. Conversely, canonical variate 2 described a weaker non-recovery trajectory and increase from baseline to day 3, with a further increase from day 3 to 14. The present study demonstrates that metabolomics can be a useful tool to monitor metabolic changes associated with altitude exposure. Furthermore, it is apparent that altitude exposure alters multiple metabolic pathways, and the time course of these changes is different over 14 days of altitude exposure.


Subject(s)
Altitude , Hypoxia/metabolism , Metabolome/physiology , Oxygen Consumption/physiology , Adult , Female , Humans , Male , Metabolomics/methods , Rest/physiology , Running/physiology , Young Adult
9.
Nutrients ; 10(9)2018 Aug 26.
Article in English | MEDLINE | ID: mdl-30149663

ABSTRACT

Human milk contains a complex combination of lipids, proteins, carbohydrates, and minerals, which are essential for infant growth and development. While the lipid portion constitutes only 5% of the total human milk composition, it accounts for over 50% of the infant's daily energy intake. Human milk lipids vary throughout a feed, day, and through different stages of lactation, resulting in difficulties in sampling standardization and, like blood, human milk is bioactive containing endogenous lipases, therefore appropriate storage is critical in order to prevent lipolysis. Suitable sample preparation, often not described in studies, must also be chosen to achieve the aims of the study. Gas chromatography methods have classically been carried out to investigate the fatty acid composition of human milk lipids, but with the advancement of other chromatographic techniques, such as liquid and supercritical fluid chromatography, as well as mass spectrometry, intact lipids can also be characterized. Despite the known importance, concise and comprehensive analysis of the human milk lipidome is limited, with gaps existing in all areas of human milk lipidomics, discussed in this review. With appropriate methodology and instrumentation, further understanding of the human milk lipidome and the influence it has on infant outcomes can be achieved.


Subject(s)
Biochemistry/methods , Chromatography, Liquid , Lipids/analysis , Magnetic Resonance Spectroscopy , Mass Spectrometry , Milk, Human/chemistry , Biochemistry/instrumentation , Biochemistry/standards , Chromatography, Gas , Chromatography, Liquid/instrumentation , Chromatography, Liquid/standards , Female , Humans , Lipid Metabolism , Magnetic Resonance Spectroscopy/instrumentation , Magnetic Resonance Spectroscopy/standards , Mass Spectrometry/instrumentation , Mass Spectrometry/standards , Milk, Human/metabolism , Nutritive Value , Reproducibility of Results
10.
Metabolites ; 8(2)2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29880740

ABSTRACT

Methamphetamine is an illicit psychostimulant drug that is linked to a number of diseases of the nervous system. The downstream biochemical effects of its primary mechanisms are not well understood, and the objective of this study was to investigate whether untargeted metabolomic analysis of an in vitro model could generate data relevant to what is already known about this drug. Rat B50 neuroblastoma cells were treated with 1 mM methamphetamine for 48 h, and both intracellular and extracellular metabolites were profiled using gas chromatography⁻mass spectrometry. Principal component analysis of the data identified 35 metabolites that contributed most to the difference in metabolite profiles. Of these metabolites, the most notable changes were in amino acids, with significant increases observed in glutamate, aspartate and methionine, and decreases in phenylalanine and serine. The data demonstrated that glutamate release and, subsequently, excitotoxicity and oxidative stress were important in the response of the neuronal cell to methamphetamine. Following this, the cells appeared to engage amino acid-based mechanisms to reduce glutamate levels. The potential of untargeted metabolomic analysis has been highlighted, as it has generated biochemically relevant data and identified pathways significantly affected by methamphetamine. This combination of technologies has clear uses as a model for the study of neuronal toxicology.

11.
Sci Rep ; 8(1): 8188, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29844538

ABSTRACT

Chytridiomycosis is among several recently emerged fungal diseases of wildlife that have caused decline or extinction of naïve populations. Despite recent advances in understanding pathogenesis, host response to infection remains poorly understood. Here we modelled a total of 162 metabolites across skin and liver tissues of 61 frogs from four populations (three long-exposed and one naïve to the fungus) of the Australian alpine tree frog (Litoria verreauxii alpina) throughout a longitudinal exposure experiment involving both infected and negative control individuals. We found that chytridiomycosis dramatically altered the organism-wide metabolism of clinically diseased frogs. Chytridiomycosis caused catastrophic failure of normal homeostatic mechanisms (interruption of biosynthetic and degradation metabolic pathways), and pronounced dysregulation of cellular energy metabolism. Key intermediates of the tricarboxylic acid cycle were markedly depleted, including in particular α-ketoglutarate and glutamate that together constitute a key nutrient pathway for immune processes. This study was the first to apply a non-targeted metabolomics approach to a fungal wildlife disease and specifically to dissect the host-pathogen interface of Bd-infected frogs. The patterns of metabolite accumulation we have identified reveal whole-body metabolic dysfunction induced by a fungal skin infection, and these findings have broad relevance for other fungal diseases.


Subject(s)
Animals, Wild/metabolism , Animals, Wild/microbiology , Anura/metabolism , Anura/microbiology , Chytridiomycota/physiology , Dermatomycoses/veterinary , Energy Metabolism , Animals , Australia , Dermatomycoses/metabolism , Female , Host-Pathogen Interactions , Liver/metabolism , Liver/microbiology , Male , Metabolic Networks and Pathways , Metabolome , Skin/metabolism , Skin/microbiology
12.
Sci Data ; 5: 180033, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29509187

ABSTRACT

The fungal skin disease chytridiomycosis has caused the devastating decline and extinction of hundreds of amphibian species globally, yet the potential for evolving resistance, and the underlying pathophysiological mechanisms remain poorly understood. We exposed 406 naïve, captive-raised alpine tree frogs (Litoria verreauxii alpina) from multiple populations (one evolutionarily naïve to chytridiomycosis) to the aetiological agent Batrachochytrium dendrobatidis in two concurrent and controlled infection experiments. We investigated (A) survival outcomes and clinical pathogen burdens between populations and clutches, and (B) individual host tissue responses to chytridiomycosis. Here we present multiple interrelated datasets associated with these exposure experiments, including animal signalment, survival and pathogen burden of 355 animals from Experiment A, and the following datasets related to 61 animals from Experiment B: animal signalment and pathogen burden; raw RNA-Seq reads from skin, liver and spleen tissues; de novo assembled transcriptomes for each tissue type; raw gene expression data; annotation data for each gene; and raw metabolite expression data from skin and liver tissues. These data provide an extensive baseline for future analyses.


Subject(s)
Animal Diseases , Anura , Chytridiomycota , Mycoses , Animal Diseases/genetics , Animal Diseases/metabolism , Animal Diseases/microbiology , Animal Diseases/physiopathology , Animals , Mycoses/genetics , Mycoses/metabolism , Mycoses/physiopathology
13.
Molecules ; 23(1)2018 Jan 12.
Article in English | MEDLINE | ID: mdl-29329227

ABSTRACT

A full understanding of the origin, formation and degradation of volatile compounds that contribute to wine aroma is required before wine style can be effectively managed. Fractionation of grapes represents a convenient and robust method to simplify the grape matrix to enhance our understanding of the grape contribution to volatile compound production during yeast fermentation. In this study, acetone extracts of both Riesling and Cabernet Sauvignon grape berries were fractionated and model wines produced by spiking aliquots of these grape fractions into model grape juice must and fermented. Non-targeted SPME-GCMS analyses of the wines showed that several medium chain fatty acid ethyl esters were more abundant in wines made by fermenting model musts spiked with certain fractions. Further fractionation of the non-polar fractions and fermentation of model must after addition of these fractions led to the identification of a mixture of polyunsaturated triacylglycerides that, when added to fermenting model must, increase the concentration of medium chain fatty acid ethyl esters in wines. Dosage-response fermentation studies with commercially-available trilinolein revealed that the concentration of medium chain fatty acid ethyl esters can be increased by the addition of this triacylglyceride to model musts. This work suggests that grape triacylglycerides can enhance the production of fermentation-derived ethyl esters and show that this fractionation method is effective in segregating precursors or factors involved in altering the concentration of fermentation volatiles.


Subject(s)
Biological Products/chemistry , Esters/chemistry , Triglycerides/chemistry , Vitis/chemistry , Acetone/chemistry , Biological Products/isolation & purification , Fatty Acids/chemistry , Fermentation , Flavoring Agents/chemistry , Fruit/chemistry , Humans , Odorants/analysis , Saccharomyces cerevisiae , Triglycerides/isolation & purification , Volatile Organic Compounds/chemistry , Wine/analysis
14.
Cell Mol Life Sci ; 74(24): 4421-4441, 2017 12.
Article in English | MEDLINE | ID: mdl-28669031

ABSTRACT

Metabolomics is an analytical technique that investigates the small biochemical molecules present within a biological sample isolated from a plant, animal, or cultured cells. It can be an extremely powerful tool in elucidating the specific metabolic changes within a biological system in response to an environmental challenge such as disease, infection, drugs, or toxins. A historically difficult step in the metabolomics pipeline is in data interpretation to a meaningful biological context, for such high-variability biological samples and in untargeted metabolomics studies that are hypothesis-generating by design. One way to achieve stronger biological context of metabolomic data is via the use of cultured cell models, particularly for mammalian biological systems. The benefits of in vitro metabolomics include a much greater control of external variables and no ethical concerns. The current concerns are with inconsistencies in experimental procedures and level of reporting standards between different studies. This review discusses some of these discrepancies between recent studies, such as metabolite extraction and data normalisation. The aim of this review is to highlight the importance of a standardised experimental approach to any cultured cell metabolomics study and suggests an example procedure fully inclusive of information that should be disclosed in regard to the cell type/s used and their culture conditions. Metabolomics of cultured cells has the potential to uncover previously unknown information about cell biology, functions and response mechanisms, and so the accurate biological interpretation of the data produced and its ability to be compared to other studies should be considered vitally important.


Subject(s)
Mammals/metabolism , Metabolome/physiology , Metabolomics/methods , Animals , Cell Line , Humans , Research Design
15.
J Appl Toxicol ; 37(12): 1481-1492, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28681389

ABSTRACT

Toxicity testing is essential for the protection of human health from exposure to toxic environmental chemicals. As traditional toxicity testing is carried out using animal models, mammalian cell culture models are becoming an increasingly attractive alternative to animal testing. Combining the use of mammalian cell culture models with screening-style molecular profiling technologies, such as metabolomics, can uncover previously unknown biochemical bases of toxicity. We have used a mass spectrometry-based untargeted metabolomics approach to characterize for the first time the changes in the metabolome of the B50 cell line, an immortalised rat neuronal cell line, following acute exposure to two known neurotoxic chemicals that are common environmental contaminants; the pyrethroid insecticide permethrin and the organophosphate insecticide malathion. B50 cells were exposed to either the dosing vehicle (methanol) or an acute dose of either permethrin or malathion for 6 and 24 hours. Intracellular metabolites were profiled by gas chromatography-mass spectrometry. Using principal components analysis, we selected the key metabolites whose abundance was altered by chemical exposure. By considering the major fold changes in abundance (>2.0 or <0.5 from control) across these metabolites, we were able to elucidate important cellular events associated with toxic exposure including disrupted energy metabolism and attempted protective mechanisms from excitotoxicity. Our findings illustrate the ability of mammalian cell culture metabolomics to detect finer metabolic effects of acute exposure to known toxic chemicals, and validate the need for further development of this process in the application of trace-level dose and chronic toxicity studies, and toxicity testing of unknown chemicals.


Subject(s)
Animal Testing Alternatives , Insecticides/toxicity , Metabolome/drug effects , Metabolomics/methods , Neurons/drug effects , Toxicity Tests/methods , Animals , Cell Culture Techniques , Cell Line, Tumor , Energy Metabolism/drug effects , Malathion/toxicity , Neurons/metabolism , Permethrin/toxicity , Rats
16.
Int J Sports Physiol Perform ; 12(8): 1085-1092, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28095081

ABSTRACT

PURPOSE: To examine the influence of manipulating aerobic contribution after whole-blood removal on pacing patterns, performance, and energy contribution during self-paced middle-distance cycling. METHODS: Seven male cyclists (33 ± 8 y) completed an incremental cycling test followed 20 min later by a 4-min self-paced cycling time trial (4MMP) on 6 separate occasions over 42 d. The initial 2 sessions acted as familiarization and baseline testing, after which 470 mL of blood was removed, with the remaining sessions performed 24 h, 7 d, 21 d, and 42 d after blood removal. During all 4MMP trials, power output, oxygen uptake, and aerobic and anaerobic contribution to power were determined. RESULTS: 4MMP average power output significantly decreased by 7% ± 6%, 6% ± 8%, and 4% ± 6% at 24 h, 7 d, and 21 d after blood removal, respectively. Compared with baseline, aerobic contribution during the 4MMP was significantly reduced by 5% ± 4%, 4% ± 5%, and 4% ± 10% at 24 h, 7 d, and 21 d, respectively. The rate of decline in power output on commencement of the 4MMP was significantly attenuated and was 76% ± 20%, 72% ± 24%, and 75% ± 35% lower than baseline at 24 h, 21 d, and 42 d, respectively. CONCLUSION: Removal of 470 mL of blood reduces aerobic energy contribution, alters pacing patterns, and decreases performance during self-paced cycling. These findings indicate the importance of aerobic energy distribution during self-paced middle-distance events.


Subject(s)
Athletic Performance/physiology , Bicycling/physiology , Blood Donors , Adult , Energy Metabolism/physiology , Exercise Test , Heart Rate/physiology , Hematocrit , Hemoglobins/metabolism , Humans , Male , Oxygen Consumption/physiology , Time Factors
17.
Food Chem ; 217: 505-510, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27664665

ABSTRACT

The gravimetric method is considered the gold standard for measuring the fat content of human milk. However, it is labor intensive and requires large volumes of human milk. Other methods, such as creamatocrit and esterified fatty acid assay (EFA), have also been used widely in fat analysis. However, these methods have not been compared concurrently with the gravimetric method. Comparison of the three methods was conducted with human milk of varying fat content. Correlations between these methods were high (r(2)=0.99). Statistical differences (P<0.001) were observed in the overall fat measurements and within each group (low, medium and high fat milk) using the three methods. Overall, stronger correlation with lower mean (4.73g/L) and percentage differences (5.16%) was observed with the creamatocrit than the EFA method when compared to the gravimetric method. Furthermore, the ease of operation and real-time analysis make the creamatocrit method preferable.


Subject(s)
Fatty Acids/analysis , Food Analysis/methods , Milk, Human/chemistry , Esterification , Humans
18.
Chemosphere ; 167: 247-254, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27728883

ABSTRACT

Persistent organic pollutants in human milk (HM) at high levels are considered to be detrimental to the breastfed infant. To determine the pesticide concentration in HM, a pilot cross-sectional study of 40 Western Australian (WA) women was carried out. Gas chromatography-tandem mass spectrometry (GC-MS/MS) with a validated QuEChERS was used for the analysis of 88 pesticides in HM. p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) with a mean concentration of 62.8 ± 54.5 ng/g fat was found, whereas other organochlorines, organophosphates, carbamates and pyrethroids were not detected in HM. Overall, no association was observed between HM p,p'-DDE concentrations and maternal age, parity, body mass index and percentage fat mass. Furthermore, for the first time no significant association was found between p,p'-DDE concentrations in HM and infant growth outcomes such as weight, length, head circumference and percentage fat mass. The calculated daily intake was significantly different to the estimated daily intake of total DDTs and was well below the guideline proposed by WHO. The DDTs levels in WA have also significantly decreased by 42 - fold since the 1970s and are currently the lowest in Australia.


Subject(s)
Child Development/drug effects , Dichlorodiphenyl Dichloroethylene/analysis , Maternal Exposure/adverse effects , Milk, Human/chemistry , Pesticides/analysis , Adult , Anthropometry , Australia , Body Composition , Breast Feeding , Cross-Sectional Studies , Dichlorodiphenyl Dichloroethylene/pharmacology , Female , Gas Chromatography-Mass Spectrometry , Humans , Infant , Lactation , Male , Parity , Pesticides/pharmacology , Pregnancy , Tandem Mass Spectrometry
19.
Sci Rep ; 6: 38355, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27924835

ABSTRACT

The presence of pesticides in human milk (HM) is of great concern due to the potential health effects for the breastfed infant. To determine the relationships between HM pesticides and infant growth and development, a longitudinal study was conducted. HM samples (n = 99) from 16 mothers were collected at 2, 5, 9 and 12 months of lactation. A validated QuEChERS method and Gas chromatography-tandem mass spectrometry (GC-MS/MS) were used for the analysis of 88 pesticides in HM. Only p,p'-DDE, p,p'-DDT and ß-HCH were detected with a mean concentration (±SD) of 52.25 ± 49.88 ng/g fat, 27.67 ± 20.96 ng/g fat and 48.00 ± 22.46 ng/g fat respectively. The concentrations of the detected pesticides decreased significantly throughout the first year of lactation. No significant relationships between HM p,p'-DDE and infant growth outcomes: weight, length, head circumference and percentage fat mass were detected. The actual daily intake (ADI) of total DDTs in this cohort was 14-1000 times lower than the threshold reference and significantly lower than the estimated daily intake (EDI). Further, the ADI decreased significantly throughout the first 12 months of lactation.


Subject(s)
DDT/isolation & purification , Dichlorodiphenyl Dichloroethylene/isolation & purification , Hexachlorocyclohexane/isolation & purification , Milk, Human/chemistry , Pesticide Residues/isolation & purification , Adult , Breast Feeding , Child Development/drug effects , Child Development/physiology , Female , Gas Chromatography-Mass Spectrometry , Humans , Infant , Infant, Newborn , Lactation/physiology , Longitudinal Studies , Male , No-Observed-Adverse-Effect Level , Tandem Mass Spectrometry , Western Australia
20.
Plant Biotechnol J ; 14(2): 649-60, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26032167

ABSTRACT

Metabolomics is becoming an increasingly important tool in plant genomics to decipher the function of genes controlling biochemical pathways responsible for trait variation. Although theoretical models can integrate genes and metabolites for trait variation, biological networks require validation using appropriate experimental genetic systems. In this study, we applied an untargeted metabolite analysis to mature grain of wheat homoeologous group 3 ditelosomic lines, selected compounds that showed significant variation between wheat lines Chinese Spring and at least one ditelosomic line, tracked the genes encoding enzymes of their biochemical pathway using the wheat genome survey sequence and determined the genetic components underlying metabolite variation. A total of 412 analytes were resolved in the wheat grain metabolome, and principal component analysis indicated significant differences in metabolite profiles between Chinese Spring and each ditelosomic lines. The grain metabolome identified 55 compounds positively matched against a mass spectral library where the majority showed significant differences between Chinese Spring and at least one ditelosomic line. Trehalose and branched-chain amino acids were selected for detailed investigation, and it was expected that if genes encoding enzymes directly related to their biochemical pathways were located on homoeologous group 3 chromosomes, then corresponding ditelosomic lines would have a significant reduction in metabolites compared with Chinese Spring. Although a proportion showed a reduction, some lines showed significant increases in metabolites, indicating that genes directly and indirectly involved in biosynthetic pathways likely regulate the metabolome. Therefore, this study demonstrated that wheat aneuploid lines are suitable experimental genetic system to validate metabolomics-genomics networks.


Subject(s)
Aneuploidy , Edible Grain/genetics , Genes, Plant , Genomics/methods , Metabolic Networks and Pathways/genetics , Metabolomics/methods , Triticum/genetics , Amino Acids, Branched-Chain/metabolism , Base Sequence , DNA, Complementary/genetics , Metabolome , Principal Component Analysis , Trehalose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...