Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1340608, 2024.
Article in English | MEDLINE | ID: mdl-38699385

ABSTRACT

Objectives: This study aims to investigate the causal relationship between Alzheimer's Disease (AD) and Diabetic Retinopathy (DR). Methods: Employing Mendelian Randomization (MR), Generalized Summary-data-based Mendelian Randomization (GSMR), and the MR-Steiger test, this study scrutinizes the genetic underpinnings of the hypothesized causal association between AD and DR, as well as its Proliferative DR (PDR) and Non-Proliferative DR (NPDR) subtypes. Comprehensive data from Genome-Wide Association Studies (GWAS) were analyzed, specifically AD data from the Psychiatric Genomics Consortium (71,880 cases/383,378 controls), and DR, PDR, and NPDR data from both the FinnGen consortium (FinnGen release R8, DR: 5,988 cases/314,042 controls; PDR: 8,383 cases/329,756 controls; NPDR: 3,446 cases/314,042 controls) and the IEU OpenGWAS (DR: 14,584 cases/176,010 controls; PDR: 8,681 cases/204,208 controls; NPDR: 2,026 cases/204,208 controls). The study also incorporated Functional Mapping and Annotation (FUMA) for an in-depth analysis of the GWAS results. Results: The MR analyses revealed that genetic susceptibility to AD significantly increases the risk of DR, as evidenced by GWAS data from the FinnGen consortium (OR: 2.5090; 95% confidence interval (CI):1.2102-5.2018, false discovery rate P-value (PFDR)=0.0201; GSMR: bxy=0.8936, bxy_se=0.3759, P=0.0174), NPDR (OR: 2.7455; 95% CI: 1.3178-5.7197, PFDR=0.0166; GSMR: bxy=0.9682, bxy_se=0.3802, P=0.0126), and PDR (OR: 2.3098; 95% CI: 1.2411-4.2986, PFDR=0.0164; GSMR: bxy=0.7962, bxy_se=0.3205, P=0.0129) using DR GWAS from FinnGen consortium. These results were corroborated by DR GWAS datasets from IEU OpenGWAS. The MR-Steiger test confirmed a significant association of all identified instrumental variables (IVs) with AD. While a potential causal effect of DR and its subtypes on AD was identified, the robustness of these results was constrained by a low power value. FUMA analysis identified OARD1, NFYA, TREM1 as shared risk genes between DR and AD, suggesting a potential genetic overlap between these complex diseases. Discussion: This study underscores the contribution of AD to an increased risk of DR, as well as NPDR and PDR subtypes, underscoring the necessity of a holistic approach in the management of patients affected by these conditions.


Subject(s)
Alzheimer Disease , Diabetic Retinopathy , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Alzheimer Disease/genetics , Risk Factors , Diabetic Retinopathy/genetics , Diabetic Retinopathy/epidemiology , Diabetic Retinopathy/etiology , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide
2.
Front Neurosci ; 17: 1235822, 2023.
Article in English | MEDLINE | ID: mdl-37781245

ABSTRACT

Objective: A multitude of observational studies have underscored a substantial comorbidity between COVID-19 and epilepsy. This study was aimed at establishing a conclusive causal link between these two conditions. Methods: We employed Mendelian randomization (MR) to evaluate the causal link between COVID-19 and epilepsy, as well as its focal and generalized subtypes. The GWAS for epilepsy and its subtypes database were abstracted from both FinnGen consortium and ILAE. Additionally, we leveraged functional mapping and annotation (FUMA) to integrate information from genome-wide association studies (GWAS) results. Results: The MR analyses revealed that genetic liability to COVID-19 infection conferred a causal effect on epilepsy [FinnGen: OR: 1.5306; 95% confidence interval (CI): 1.1676-2.0062, PFDR (false discovery rate) = 0.0076; ILAE: OR: 1.3440; 95% CI: 1.0235-1.7649, PFDR = 0.0429], and generalized epilepsy (FinnGen: OR: 2.1155; 95% CI: 1.1734-3.8139, PFDR = 0.0327; ILAE: OR: 1.1245; 95% CI: 1.0444-1.2108, PFDR = 0.0114). Genetic liability to COVID-19 hospitalization conferred a causal effect on epilepsy (FinnGen: OR: 1.0934; 95% CI: 1.0097-1.1841, PFDR = 0.0422; ILAE: OR: 1.7381; 95% CI: 1.0467-2.8862, PFDR = 0.0451), focal epilepsy (ILAE: OR: 1.7549; 95% CI: 1.1063-2.7838, PFDR = 0.0338), and generalized epilepsy (ILAE: OR: 1.1827; 95% CI: 1.0215-1.3693, PFDR = 0.0406). Genetic liability to COVID-19 severity conferred a causal effect on epilepsy (FinnGen consortium: OR: 1.2454; 95% CI: 1.0850-1.4295, PFDR = 0.0162; ILAE: OR: 1.2724; 95% CI: 1.0347-1.5647, PFDR = 0.0403), focal epilepsy (FinnGen: OR: 1.6818; 95% CI: 1.1478-2.4642, PFDR = 0.0231; ILAE: OR: 1.6598; 95% CI: 1.2572-2.1914, PFDR = 0.0054), and generalized epilepsy (FinnGen: OR: 1.1486; 95% CI: 1.0274-1.2842, PFDR = 0.0335; ILAE: OR: 1.0439; 95% CI: 1.0159-1.0728, PFDR = 0.0086). In contrast, no causal linkage of epilepsy on COVID-19 was observed. Further, FUMA analysis identified six overlapping genes, including SMEK2, PNPT1, EFEMP1, CCDC85A, VRK2, and BCL11A, shared between COVID-19 and epilepsy. Tissue-specific expression analyses revealed that the disease-gene associations of COVID-19 were significantly enriched in lung, ovary, and spleen tissue compartments, while being significantly enriched in brain tissue for epilepsy. Conclusion: Our study demonstrates that COVID-19 can be a contributing factor to epilepsy, but we found no evidence that epilepsy contributes to COVID-19.

3.
J Biomol Struct Dyn ; : 1-20, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37732621

ABSTRACT

Vascular dementia (VaD), a cognitive impairment resulting from cerebrovascular issues, could be mitigated by Epimedium. This study investigates Epimedium's efficacy in VaD management through a systematic review, network pharmacology, molecular docking, and molecular dynamic simulations (MDS). Comprehensive literature searches were conducted across various databases. Epimedium's pharmacological properties were analyzed using the TCMSP database. Integration with the Aging Atlas database enabled the identification of shared targets between Epimedium and VaD. A protein-protein interaction (PPI) network was constructed, and central targets' topological attributes were analyzed using Cytoscape 3.9.1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using "ClusterProfiler" R package. The interactions between Epimedium and central targets were assessed by Molecular docking and MDS. Epimedium and its 23 bioactive components counteracted oxidative stress, neuroinflammation, and neuronal damage, thereby attenuating cognitive deterioration in VaD. A total of 78 common targets were identified, with 22 being significantly related to aging. Enrichment analysis identified 1769 GO terms and 139 KEGG pathways, highlighting the AGE-RAGE signaling pathway. Molecular docking revealed that 23 bioactive components, except Linoleyl acetate, effectively interacted with top central targets (JUN, MAPK14, IL6, FOS, TNF). MDS demonstrated that flavonoids Icariin, Kaempferol, Luteolin, and Quercetin formed stable complexes with RAGE. The study identifies RAGE as a novel therapeutic target for Epimedium in the mitigation of VaD via its anti-inflammatory properties.

4.
J Biomol Struct Dyn ; : 1-21, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37768122

ABSTRACT

Vascular dementia (VaD) ranks as the second most prevalent form of dementia and poses a considerable global health challenge. Icariin has been recognized for its robust neuroprotective effects in combating VaD. Nonetheless, the underlying mechanisms have not been fully elucidated. An integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulations (MDS) was employed to systematically investigate the potential pharmacological actions of Icariin in counteracting VaD. The AGE/RAGE pathway was identified as a promising anti-inflammatory pathway. A chronic cerebral hypoperfusion mouse model was utilized to establish VaD. Both Icariin and FP S-ZM1 (a RAGE inhibitor) were administered through oral gavage and intraperitoneal injection, respectively. The Morris water maze (MWZ) was used to evaluate cognitive functions. Moreover, immunofluorescence, RT-qP CR, and Western blot analyses were carried out to evaluate the effects of FP S-ZM1 on neuroinflammation. Network analysis identified 14 crucial targets and highlighted the AGE-RAGE signaling cascade in diabetic complications as the foremost KEGG pathway with potential anti-neuroinflammatory property. MDS results suggested a stable binding of the RAGE-Icariin complex. Remarkably, Icariin was found to effectively mitigate cognitive deficits in VaD mice, which was correlated with the upregulation of the P I3K/AKT pathway and downregulation of the JNK/cJUN signaling cascade. Critically, co-administration of FP S-ZM1 enhanced Icariin's ameliorative effects on cognitive deficits, owing to bolstered anti-neuroinflammatory action. This study unveils the potential of Icariin in alleviating cognitive dysfunction and neuroinflammation in VaD, which may be attributed to the modulation of the AGE/RAGE pathway.Communicated by Ramaswamy H. Sarma.

5.
Neuro Endocrinol Lett ; 43(6): 293-302, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36586129

ABSTRACT

The association between amyotrophic lateral sclerosis (ALS) and primary progressive aphasia (PPA) is rarely seen in patients. A case of ALS-PPA with a possible reticulon 2 (RTN2) mutation was reported in this study. Moreover, we systematically reviewed the previous reports of 28 ALS cases with progressive non-fluent aphasia (PNFA) and semantic dementia (SD) to identified the unique pathologic features and strong heritability of ALS-PPA. There is a different heritability among the ALS-SD, ALS-PNFA, and the ALS-unclassified PPA groups (p=0.003). Males are more prone to have ALS-PPA than females in all the three groups (p=0.028). PPA-ALS usually starts with cognitive impairment, and the onset most often involves the bulbar. In addition, chromosome 9 open reading frame 72(C9ORF72) and TANK-binding kinase 1 (TBK1) are important pathogenic genes of PPA-ALS. Overall, heritability is of high certainty in ALS-SD, ALS-PNFA, and the ALS-unclassified PPA groups. TAR (Trans-Activator Regulatory) DNA-binding Protein 43 (TDP43) is a 100% predictive pathologic protein of ALS-PPA. C9ORF72 and TBK1 are important pathogenic genes of PPA-ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Aphasia, Primary Progressive , Frontotemporal Dementia , Male , Female , Humans , C9orf72 Protein/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/psychology , Mutation
6.
Front Pharmacol ; 13: 1066819, 2022.
Article in English | MEDLINE | ID: mdl-36532735

ABSTRACT

Aim: Alzheimer's disease (AD) is a neurodegenerative condition that is characterized by the gradual loss of memory and cognitive function. Icariin, which is a natural chemical isolated from Epimedii herba, has been shown to protect against AD. This research examined the potential mechanisms of Icariin's treatment against AD via a comprehensive review of relevant preclinical studies coupled with network pharmacology. Methods: The PubMed, Web of Science, CNKI, WANFANG, and VIP databases were used to identify the relevant studies. The pharmacological characteristics of Icariin were determined using the SwissADME and TCMSP databases. The overlapping targets of Icariin and AD were then utilized to conduct disease oncology (DO) analysis to identify possible hub targets of Icariin in the treatment of AD. The hub targets were then used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and the interactions of the targets and Icariin were assessed via molecular docking and molecular dynamics simulation (MDS). Results: According to the literature review, Icariin alleviates cognitive impairment by regulating the expression of Aß1-42, Aß1-40, BACE1, tau, hyperphosphorylated tau, and inflammatory mediators. DO analysis revealed 35 AD-related hub targets, and the HIF-1 signalling pathway was ranked first according to the KEGG pathway analysis. Icariin effectively docked with the 35 hub targets and HIF-1α, and the dynamic binding of the HIF-1-Icariin complex within 100 ns indicated that Icariin contributed to the stability of HIF-1α. Conclusion: In conclusion, our research used a literature review and network pharmacology methods to identify the HIF-1 signalling pathway as a potential pathway for Icariin's treatment against AD.

7.
Oxid Med Cell Longev ; 2022: 3858314, 2022.
Article in English | MEDLINE | ID: mdl-36338345

ABSTRACT

Ischemic stroke exhibits high morbidity, disability, and mortality, and treatments for ischemic stroke are limited despite intensive research. The potent neuroprotective benefits of Epimedium against ischemic stroke have gained lots of interest. Nevertheless, systematic research on the direct role and mechanisms of Epimedium in ischemic stroke is still lacking. Network pharmacology analysis coupled with experimental verification was utilized to systematically evaluate the potential pharmacological mechanism of Epimedium against ischemic stroke. The TCMSP database was used to mine the bioactive ingredients and Epimedium's targets. The DrugBank, OMIM, and GeneCards databases were employed to identify potential targets of ischemic stroke. GO and KEGG pathway analyses were also carried out. The interaction between active components and hub targets was confirmed via molecular docking. An experimental ischemic stroke model was used to evaluate the possible therapeutic mechanism of Epimedium. As a result, 23 bioactive compounds of Epimedium were selected, and 30 hub targets of Epimedium in its function against ischemic stroke were identified, and molecular docking results demonstrated good binding. The IL-17 signaling pathway was revealed as a potentially significant pathway, with the NF-κB and MAPK/ERK signaling pathways being involved. Furthermore, in vivo experiments demonstrated that Epimedium treatment could improve neurological function and reduce infarct volume. Additionally, Epimedium reduced the activation of microglia and astrocytes in both the ischemic penumbra of the hippocampus and cerebral cortex following ischemic stroke. Western blot and RT-qPCR analyses demonstrated that Epimedium not only depressed the expression of IL-1ß, TNF-α, IL-6, and IL-4 but also inhibited the NF-κB and MAPK/ERK signaling pathways. This study applied network pharmacology and in vivo experiment to explore possible mechanism of Epimedium's role against ischemic stroke, which provides insight into the treatment of ischemic stroke.


Subject(s)
Drugs, Chinese Herbal , Epimedium , Ischemic Stroke , Humans , Epimedium/chemistry , Epimedium/metabolism , Ischemic Stroke/drug therapy , NF-kappa B/metabolism , Molecular Docking Simulation , Network Pharmacology , Drugs, Chinese Herbal/pharmacology
8.
Medicine (Baltimore) ; 101(52): e32452, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36596053

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) coexisting with chorea is very rare. CASE REPORT: We present the case of a 48-year-old man with ALS and chorea; the diagnostic certainty was high based on clinical examination results. Combining the data from literature, we analyzed the characteristics of patients with ALS and chorea. We found that ALS coexisting with chorea is very rare, but is often hereditary with a genetic mutation. Most patients with ALS and chorea are caused by abnormal amplification of a CAG sequence in the HTT gene, and these patients have a mild course of disease. The FUS, VCP, and SETX genes also have low mutation frequencies in patients with ALS and chorea. CONCLUSION: The abnormal amplification of a CAG sequence in the HTT gene in ALS with chorea has an obvious familial genetic tendency, and most patients have a mild disease course.


Subject(s)
Amyotrophic Lateral Sclerosis , Chorea , Male , Humans , Middle Aged , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/genetics , Chorea/etiology , Chorea/genetics , Mutation , Mutation Rate , DNA Helicases/genetics , RNA Helicases/genetics , Multifunctional Enzymes
9.
Mol Med ; 27(1): 37, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33836646

ABSTRACT

OBJECTIVE: Ovarian tumour domain deubiquitinase with linear linkage specificity (OTULIN) is a potent negative regulator of the nuclear factor-κB (NF-κB) signalling pathway, and it plays a strong neuroprotective role following acute ischemic stroke. Electroacupuncture (EA) is an effective adjuvant treatment for reducing brain injury and neuroinflammation via the inhibition of NF-κB p65 nuclear translocation, but the underlying mechanism is not clear. The present study investigated whether OTULIN was necessary for EA to mitigate brain injury and glial cell activation in a transient middle cerebral artery occlusion (tMCAO) model in rats. METHODS: An acute ischaemic stroke model was established via tMCAO surgery in Sprague-Dawley (SD) rats. EA was performed once daily at "Baihui (GV 20)", "Hegu (LI 4)", and "Taichong (LR 3)" acupoints. The effect of EA on the spatiotemporal expression of OTULIN in the ischaemic penumbra of the cerebral cortex was detected within 7 days after reperfusion. The effects of OTULIN gene silencing on EA neurological deficits, cerebral infarct volume, neuronal damage, the activation of microglia and astrocytes, the contents of tumour necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1ß) and interleukin-6 (IL-6), and the expression of p-IκBa, IκBa and nucleus/cytoplasm NF-κB p65 protein were assessed. RESULTS: EA treatment increased endogenous OTULIN expression, which peaked at 48 h. Enhanced OTULIN was primarily located in neurons, but a small amount of OTULIN was detected in microglia. OTULIN silencing obviously reversed EA neuroprotection, which was demonstrated by worsened neurobehavioural performance, cerebral infarct volume and neuronal injury. The inhibitory effect of EA on the NF-κB pathway was also attenuated by enhanced IκBα phosphorylation and NF-κB p65 nuclear translocation. EA partially inhibited the transformation of microglia and astrocytes from resting states to activated states and reduced the secretion of TNF-α, IL-1ß and IL-6. However, these preventive effects were reversed after the silencing of OTULIN expression. CONCLUSIONS: OTULIN provides a new potential therapeutic target for EA to alleviate acute ischaemic stroke-induced brain injury and the activation of glial cells, which are related to suppression of the NF-κB signalling pathway.


Subject(s)
Brain Injuries/therapy , Electroacupuncture , Endopeptidases/genetics , Infarction, Middle Cerebral Artery/therapy , Ischemic Stroke/therapy , Animals , Brain Injuries/genetics , Brain Injuries/metabolism , Cerebral Cortex/metabolism , Cytokines/metabolism , Endopeptidases/metabolism , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/metabolism , Ischemic Stroke/genetics , Ischemic Stroke/metabolism , NF-KappaB Inhibitor alpha/metabolism , Neuroglia/metabolism , Neurons/metabolism , Neuroprotection , Rats, Sprague-Dawley , Signal Transduction , Transcription Factor RelA/metabolism
10.
Biochem Biophys Res Commun ; 503(4): 3225-3234, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30149915

ABSTRACT

Neuroinflammation plays a critical role in ischemic stroke pathology and could be a promising target in ischemic stroke. Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglia-specific receptor in the CNS that is involved in regulating neuroinflammation in cerebral ischemia. However, the role of TREM2 in ischemic stroke is controversial. Electroacupuncture (EA) is an effective therapy for alleviating stroke-induced neuroinflammation. Here, we found that ischemic stroke induced an increased microglial TREM2 expression, and EA treatment can further promote microglial TREM2 expression following cerebral ischemia. TREM2 overexpression was observed to play a neuroprotective role by improving the neurobehavioral deficit and reducing the cerebral infarct volume 72 h after reperfusion, whereas TREM2 silencing had the opposite effects. Moreover, the effects of EA on improving stroke outcome and suppressing neuroinflammation in the brain were reversed by TREM2 silencing. Finally, TREM2 silencing also suppressed the ability of EA to regulate the PI3K/Akt and NF-κB signaling pathways. Altogether, the results show that TREM2 could be a potential target in EA treatment for attenuating inflammatory injury following cerebral ischemia/reperfusion.


Subject(s)
Brain Ischemia/therapy , Electroacupuncture/methods , Inflammation/therapy , Membrane Glycoproteins/genetics , Reperfusion Injury/therapy , Up-Regulation , Animals , Brain Ischemia/complications , Brain Ischemia/genetics , Brain Ischemia/pathology , Gene Silencing , Inflammation/complications , Inflammation/genetics , Inflammation/pathology , Male , Microglia/metabolism , Microglia/pathology , Rats, Sprague-Dawley , Reperfusion Injury/complications , Reperfusion Injury/genetics , Reperfusion Injury/pathology
11.
J Neuroinflammation ; 15(1): 83, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29544517

ABSTRACT

BACKGROUND: Ischemic stroke-induced neuroinflammation is mainly mediated by microglial cells. The nuclear factor kappa B (NF-κB) pathway is the key transcriptional pathway that initiates inflammatory responses following cerebral ischemia. OTULIN, a critical negative regulator of the NF-κΒ signaling pathway, exerts robust effects on peripheral immune cell-mediated inflammation and is regarded as an essential mediator for repressing inflammation in vivo. The effect of OTULIN on inflammatory responses in the central nervous system (CNS) was previously unstudied. This current study investigated the anti-inflammatory effect of OTULIN both in vitro and in vivo in ischemic stroke models. METHODS: Sprague-Dawley (SD) rats were subjected to transient middle cerebral artery occlusion (tMCAO) or an intraperitoneal injection of lipopolysaccharide (LPS). Overexpression of the OTULIN gene was utilized to observe the effect of OTULIN on ischemic stroke outcomes. The effect of OTULIN overexpression on microglia-mediated neuroinflammation was examined in rat primary microglia (PM) and in the microglial cell line N9 after induction by oxygen-glucose deprivation (OGD)-treated neuronal medium. The activation and inflammatory responses of microglia were detected using immunofluorescence, ELISA, and qRT-PCR. The details of molecular mechanism were assessed using Western blotting. RESULTS: In the tMCAO rats, the focal cerebral ischemia/reperfusion injury induced a continuous increase in OTULIN expression within 72 h, and OTULIN expression was increased in activated microglial cells. OTULIN overexpression obviously decreased the cerebral infarct volume, improved the neurological function deficits, and reduced neuronal loss at 72 h after reperfusion, and it also inhibited the activation of microglia and attenuated the release of TNF-α, IL-1ß, and IL-6 by suppressing the NF-κB pathway at 24 h after tMCAO. In vitro, OTULIN overexpression inhibited the microglia-mediated neuroinflammation by reducing the production of TNF-α, IL-1ß, and IL-6 via depressing the NF-κB pathway in both PM and N9 cells. CONCLUSIONS: OTULIN provides a potential therapeutic target for ischemic brain injury by ameliorating the excessive activation of microglial cells and neuroinflammation through repressing the NF-κB signaling pathway.


Subject(s)
Brain Neoplasms/etiology , Endopeptidases/metabolism , Gene Expression Regulation, Viral/physiology , Infarction, Middle Cerebral Artery/complications , Lentivirus/physiology , Signal Transduction/physiology , Animals , Animals, Newborn , Cell Hypoxia/drug effects , Cell Hypoxia/physiology , Cells, Cultured , Cerebral Cortex/cytology , Disease Models, Animal , Endopeptidases/genetics , Gene Expression Regulation, Viral/drug effects , Glucose/deficiency , Lipopolysaccharides/toxicity , Male , Microglia/drug effects , Microglia/virology , Neurons/drug effects , Neurons/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...