Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
Crit Rev Food Sci Nutr ; : 1-15, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950560

ABSTRACT

In cereals, the protein body and protein matrix are usually two morphological protein structures. However, processing treatments can affect protein structures, change protein bodies into the matrix, or induce a change in the matrix structure; therefore, the processing-induced matrix was listed as the third morphological structure of the protein. Previous research on the effect of proteins was mainly based on protein content and composition, but these studies arrived at different conclusions. Studying the effect of protein morphological structures on sensorial property and starch digestion can provide a theoretical basis for selecting cultivars with high sensorial property and help produce low-glycemic index foods for people with diabetes, controlling their postprandial blood sugar. This study aimed to review the distribution and structure of protein bodies, protein matrices, and processing-induced matrices, as well as their influence on cereal sensorial property and starch digestion. Therefore, we determined the protein morphological structures in different cereal cultivars and summarized its impact. Protein bodies mainly have steric stabilization effects on starch gelatinization, whereas the protein matrix serves as a physical barrier surrounding the starch to inhibit water absorption and α-amylase. Processing can change protein morphological structures, enabling protein bodies to act as a physical matrix barrier.

2.
Crit Rev Food Sci Nutr ; : 1-16, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38920118

ABSTRACT

As compared with exogenous components, non-starch components (NSCS), such as proteins, lipids, non-starch polysaccharides (NSPs), and polyphenols, inherently present in cereals, are more effective at inhibiting starch digestibility. Existing research has mostly focused on complex systems but overlooked the analysis of the in-situ role of the NSCS. This study reviews the crucial mechanisms by which endogenous NSCS inhibit starch digestion, emphasizing the spatial distribution-function relationship. Starch granules are filled with pores/channels-associated proteins and lipids, embedding in the protein matrix, and maintained by endosperm cell walls. The potential starch digestion inhibition of endogenous NSCS is achieved by altering starch gelatinization, molecular structure, digestive enzyme activity, and accessibility. Starch gelatinization is constrained by endogenous NSCS, particularly cell wall NSPs and matrix proteins. The stability of the starch crystal structure is enhanced by the proteins and lipids distributed in the starch granule pores and channels. Endogenous polyphenols greatly inhibit digestive enzymes and participate in the cross-linking of NSPs in the cell wall space, which together constitute a physical barrier that hinders amylase diffusion. Additionally, the spatial entanglement of NSCS and starch under heat and non-heat processing conditions reduces starch accessibility. This review provides novel evidence for the health benefits of whole cereals.

3.
Opt Lett ; 49(7): 1749-1752, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560853

ABSTRACT

Non-contact optical temperature measurement can effectively avoid the disadvantages of traditional contact thermometry and thus, become a hot research topic. Herein, a fluorescence intensity ratio (FIR) thermometry using a time-resolved technique based on La2CaZrO6:Cr3+ (LCZO) is proposed, with a maximum relative sensitivity (Sr - FIR) of 2.56% K-1 at 473 K and a minimum temperature resolution of 0.099 K. Moreover, the relative sensitivity and temperature resolution can be effectively controlled by adjusting the width of the time gate based on the time-resolved technique. Our work provides, to our knowledge, new viewpoints into the development of novel optical thermometers with adjustable relative sensitivity and temperature resolution on an as-needed basis.

4.
Int J Biol Macromol ; 259(Pt 2): 129334, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218298

ABSTRACT

The digestive properties of oat-based food have garnered considerable interest. This study aimed to explore the internal and external factors contributing to different digestion properties of oat flour under actual processing conditions. Analysis of the ordered structure of oat starch revealed that an increase in gelatinization moisture to 60 % led to a decrease in crystallinity, R1047/1022 value, and helical structures content to 0, 0.48 %, and 1.45 %, respectively. Even when the crystal structure was completely destroyed, the short-range structure retained a certain degree of order. Surface structure observations of starch granules and penetration experiments with amylase-sized polysaccharide fluorescence probes indicated that non-starch components and small pores effectively hindered the diffusion of the probes but low-moisture (20 %) gelatinization substantially damaged this barrier. Furthermore, investigations into starch digestibility and starch molecular structure revealed that the ordered structure remaining inside the starch after high gelatinization delayed the digestion rate (0.028 min-1) and did not increase the content of resistant starch (7.10 %). It was concluded that the surface structure and non-starch components of starch granules limited the extent of starch digestion, whereas the spatial barrier of the residual ordered structure affected the starch digestion rate.


Subject(s)
Avena , Starch , Starch/chemistry , Avena/chemistry , Flour , Digestion , Amylases
5.
Food Res Int ; 175: 113618, 2024 01.
Article in English | MEDLINE | ID: mdl-38128974

ABSTRACT

Summer-autumn tea is characterized by high polyphenol content and low amino acid content, resulting in bitter and astringent teast. However, these qualities often lead to low economic benefits, ultimately resulting in a wastage of tea resources. The study focused on evaluating the effects of foliar spraying of glucosamine selenium (GLN-Se) on summer-autumn tea. This foliar fertilizer was applied to tea leaves to assess its impact on plant development, nutritional quality, elemental uptake, organoleptic quality, and antioxidant responses. The results revealed that GlcN-Se enhanced photosynthesis and yield by improving the antioxidant system. Additionally, the concentration of GlcN-Se positively correlated with the total and organic selenium contents in tea. The foliar application of GlcN-Se reduced toxic heavy metal content and increased the levels of macronutrients and micronutrients, which facilitated adaptation to environmental changes and abiotic stresses. Furthermore, GlcN-Se significantly improved both non-volatile and volatile components of tea leaves, resulting in a sweet aftertaste and nectar aroma in the tea soup. To conclude, the accurate and rational application of exogenous GlcN-Se can effectively enhance the selenium content and biochemical status of tea. This improvement leads to enhanced nutritional quality and sensory characteristics, making it highly significant for the tea industry.


Subject(s)
Antioxidants , Selenium , Antioxidants/metabolism , Selenium/analysis , Polyphenols , Tea , Nutritive Value
6.
Foods ; 12(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37835238

ABSTRACT

Cassava flour (CF) was used as a raw material to replace wheat flour (WF) at levels of 0% (control), 10%, 20%, 30%, 40%, and 50% to prepare wheat-cassava composite flour (W-CF) and dough. The effects of different CF substituting levels on the functional properties of the W-CF and dough were investigated. The results show that an increase in CF led to a decrease in the moisture, protein, fat, and b* values of W-CF. The crude fiber, ash, starch, L*, a* values, iodine blue value (IBV), and swelling power (SP) of the composite flour increased gradually. It was found that the water absorption, hardness, and chewiness of the W-CF dough increased with an increase in the CF substitution level. A different trend could be observed with the springiness and cohesiveness of the W-CF dough. The resistance to extension, extensibility, and the extended area of the W-CF dough at all substitution levels was significantly lower than that of the WF dough. The elasticity and cohesiveness of the dough tended to increase for CF content from 10% to 30%, followed by a decrease at a higher replacement. Pearson correlation analysis indicated that the substitution levels of CF had a significant influence on the proximate analysis and functional properties of the W-CF and dough. This study will provide important information on choosing CF substitution levels for different products.

7.
Opt Express ; 31(16): 25978-25992, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710470

ABSTRACT

Although Cr3+ as activator for Near infrared (NIR) phosphors has been widely studied, the peaks of Cr3+ emission spectra in most hosts are less than 1000 nm. Nd3+ as an activator in many hosts has a wide distribution of absorption peaks in the Ultraviolet-visible-Near infrared (UV-vis-NIR) band, especially in the 650-900 nm band for effective NIR to NIR Stokes luminescence (4F3/2→4I9/2, 4F3/2→4I11/2 transitions). Therefore, Cr3+, Nd3+ co-doping to achieve the emission in the NIR II region (1000-1700nm) is very meaningful. Here, we report La2CaZrO6(LCZO): Cr3+, Nd3+ NIR phosphors with emission spectra covering an ultra-wide range of 700-1400 nm and reveal their luminescence mechanism. The energy transfer efficiency of Cr3+ for Nd3+ can be as high as 88.4% under 471 nm blue light excitation. In the same case, the integrated intensity of the emission spectra of Cr3+, Nd3+ co-doped can reach 847% of that of Nd3+ alone and 204% of that of Cr3+ alone. Finally, the combination of commercial blue light chips and Cr3+, Nd3+ co-doped NIR phosphors shows great potential for applications in face recognition, night lighting, and angiography.

8.
Front Nutr ; 9: 1003657, 2022.
Article in English | MEDLINE | ID: mdl-36118753

ABSTRACT

The study aims to evaluate the relationships between characteristics of regional rice raw material and resulting quality of rice noodles. Four of most commonly used rice cultivars in Guangxi for noodles production were investigated. The results showed that compositions of rice flour primarily affected gelatinization and retrogradation, which then influenced the textural and sensory properties of rice noodles. Amylose content had strong positive correlation with peak viscosity (PV) and trough viscosity (TV) of rice flour (P < 0.01). PV and TV had strong negative correlations with adhesive strength (P < 0.01) and positive correlations with chewiness (P < 0.05), hardness, peak load and deformation at peak of rice noodles (P < 0.01). Protein content had positive correlation with the Setback of rice flour (P < 0.05), which is known to have influences on retrogradation. In addition, solubility had positive correlations with cooking loss (P < 0.01) and broken rate (P < 0.05) of rice noodles and strong negative correlation with its springiness (P < 0.01). Swelling power had negative correlation with broken rate (P < 0.05). As sensory score of rice noodles was negatively correlated with broken rate (P < 0.05) and cooking loss (P < 0.01) and positively correlated with springiness (P < 0.01), solubility and swelling power of rice flours were presumed to be useful for predicting consumer acceptability of rice noodles.

9.
Carbohydr Polym ; 291: 119571, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35698392

ABSTRACT

A porous starch-based carrier coated with chitosan-phytic acid was designed for oral administration to improve drug delivery to the colon. Using hydrophobic paclitaxel as a model drug, improved drug loading (15.12% ±â€¯0.31%) and entrapment efficiency (86.63 ±â€¯1.30%) of porous starch were achieved by size/shape matching and adsorption force. Fluorescent paclitaxel particles inside starch were captured clearly. Furthermore, chitosan-phytic acid was added as a second protection since porous starch showed a dissolution rate of only 14.98-20.27% during the simulated digestion in stomach and small intestine, which was far lower than that of raw paclitaxel in porous starch (59.65 ±â€¯2.57%). The release curve in the colon was also obtained and showed that 86.98 ±â€¯2.90% of the drug was released. Finally, we verified the non-covalent interactions between starch and paclitaxel. This showed that the retention of paclitaxel into porous starch decreased once hydrogen bonding stopped. The hydrophobic CH-π effect provides a binding complementing contribution.


Subject(s)
Chitosan , Starch , Adsorption , Chitosan/metabolism , Colon/metabolism , Delayed-Action Preparations/metabolism , Drug Carriers/chemistry , Drug Delivery Systems , Excipients/metabolism , Microspheres , Paclitaxel/chemistry , Phytic Acid , Porosity , Starch/chemistry
10.
Carbohydr Polym ; 291: 119628, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35698420

ABSTRACT

Paclitaxel, a clinical chemotherapy drug commonly used in the past few years, is greatly limited by its low therapeutic index. Starch and its derivatives have gained wide interest from researchers owing to their unique hydrophilic and hydrophobic properties resulting from their various modifications, which exert the effect-enhancing and toxicity-reducing activity to paclitaxel in vivo and in vitro. This review summarizes the research progress toward different kinds of starch-based carriers, whether oral or injectable. In addition, we discuss the complex properties of starch derivatives toward physically complexed or chemically conjugated paclitaxel. The corresponding complex configurations are suggested. Starch-based carriers can act as permeability enhancers because they may interact with the unstirred water layer that separates hydrophobic drugs from biological membranes, even altering the barrier properties of the membrane. The information presented in this review may be used as a reference for future hydrophobic drug carrier studies.


Subject(s)
Paclitaxel , Starch , Drug Carriers/chemistry , Excipients , Hydrophobic and Hydrophilic Interactions , Paclitaxel/chemistry , Starch/chemistry
11.
Food Chem ; 352: 129350, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33657481

ABSTRACT

Fermented cassava products are important starchy food staples in South America. The quality of the products is affected by the baking expansion ability of the dough, which is in turn influenced by the starch fermentation process and drying method employed. We investigated the structural properties of cassava starch after different fermentation and drying treatments, and the effect of starch structure on scalding of dough and baking expansion ability. Fermentation combined with either exposure to sunlight or UV light treatment resulted in high cassava starch baking expansion. Moreover, we observed decreased crystallinity and increased disordered crystalline regions with lower molecular weight in the two types of starch-fermented combined with sunlight or UV light treatment-and both appeared to have a continuous network structure and polarized cross in scalded dough, which are conducive to holding gas and losing water, thus promoting high baking expansibility.


Subject(s)
Food Handling , Manihot/chemistry , Starch/chemistry , Desiccation , Fermentation , Manihot/radiation effects , Molecular Weight , Sunlight , Ultraviolet Rays
12.
J Nanosci Nanotechnol ; 21(2): 962-970, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33183431

ABSTRACT

In recent years, mTOR signaling pathway has been found to be the main bridge between TSC1/TSC2 gene mutation and tuberous sclerosis phenotype. Although mTOR inhibitors have been reported to treat tuberous sclerosis in foreign countries, there is still a lack of long-term follow-up results and clinical treatment experience in children. Therefore, research at home and abroad is actively focusing on the mTOR signaling pathway to further clarify the pathogenesis of the disease, and from a clinical point of view, to summarize the clinical data of more patients treated with mTOR inhibitors, to conduct a long-term follow-up and exploration of rapamycin treatment, and to summarize mature treatment experience. This is also the research hotspot of tuberous sclerosis. Based on the study of the treatment of tuberous sclerosis patients with rapamycin nanomicelles by abdominal ultrasound, the therapeutic effect and safety were compared and evaluated through the observation and description of the clinical seizure control and the recovery of EEG peak out of rhythm in children with tuberous sclerosis and infantile spasm.


Subject(s)
Tuberous Sclerosis , Child , Humans , Signal Transduction , Sirolimus/therapeutic use , Tuberous Sclerosis/diagnostic imaging , Tuberous Sclerosis/drug therapy , Tuberous Sclerosis/genetics
13.
Front Nutr ; 7: 598960, 2020.
Article in English | MEDLINE | ID: mdl-33324670

ABSTRACT

The impacts of environmental conditions on pasting and physicochemical properties were investigated using flour samples of the same cassava cultivar grown in seven different locations. Significant location differences in essential component (except for fiber) content of cassava flour were observed. Cassava flour showed obviously separated traits in the principal component analysis (PCA) of near-infrared spectra (NIR) according to geographical origins. The environmental effects were significant in the pasting properties of cassava flours. Sufficient precipitation and suitable low temperature promoted accumulation of starch in cassava, resulting in the high peak viscosity values of cassava flour. Pasting temperatures of cassava flour had a significant direct correlation with growth temperature and were negatively correlated with altitude. Precipitation from August to October showed a stronger direct correlation with trough and final viscosity. The results of this study indicated the possibility of predicting and controlling cassava flour quality and pasting properties according to the environmental conditions.

14.
Food Funct ; 11(12): 10945-10953, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33245312

ABSTRACT

Resistant starch, a functional food ingredient, can improve the nutritional value of food products. In this study, the in vitro digestibility of starch from banana flour at four ripening stages was evaluated. The result showed that the resistant starch content of banana flour at ripening stage 1 was up to 81%. Furthermore, to explore the effect of resistant starch in the body, the in vivo digestibility of banana flour was investigated. The intake of banana flour at ripening stage 1 resulted in a nearly 70% decrease in the homeostasis model assessment of insulin resistance value, compared to that of the model group. By contrast, the genes related to glucokinase were upregulated by 66%, and the expression level of the insulin receptor gene was increased by more than 1.5 times that of the model group. Thus, natural banana flour has potential for controlling type 2 diabetes mellitus.


Subject(s)
Digestion/physiology , Flour/analysis , Musa/chemistry , Resistant Starch/metabolism , Starch/metabolism , Blood Glucose , Body Weight , Diabetes Mellitus, Type 2 , Functional Food , Glucagon-Like Peptide 1/metabolism , Homeostasis , Insulin Resistance , Lipids/blood , Nutritive Value
15.
PeerJ ; 8: e9061, 2020.
Article in English | MEDLINE | ID: mdl-32477834

ABSTRACT

The glycopeptidase GCP and its homologue proteins are conserved and essential for survival of bacteria. The ygjD gene (Glycopeptidase homologue) was cloned from Vibrio harveyi strain SF-1. The gene consisted of 1,017 bp, which encodes a 338 amino acid polypeptide. The nucleotide sequence similarity of the ygjD gene with that of V. harveyi FDAARGOS 107 was 95%. The ygjD gene also showed similarities of 68%, 67% and 50% with those of Salmonella enterica, Escherichia coli and Bacillus cereus. The ygjD gene was expressed in E. coli BL21 (DE3) and the recombinant YgjD was purified by Ni2+ affinity chromatography column. The purified YgjD showed a specific 37 kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and exhibited protease activities of 59,000 units/mg, 53,700 units/mg and 8,100 units/mg, respectively, on N-Acetyl-L-tyrosine ethyl ester monohydrate (ATEE), N-Benzoyl-L-tyrosine ethyl ester (BTEE) and N-Benzoyl-DL-arginine-4-nitroanilide hydrochloride (BAPNA) substrates. When the conserved amino acids of His111, Glu113 and His115 in the YgjD were replaced with alanine, respectively, the protease activities of the mutants were partly decreased. The two conserved His111 and His115 of YgjD were mutated and the protein lost the protease activity, which implied that the two amino acid played very important roles in maintaining its protease activity. The addition of the purified YgjD to the culture medium of V. harveyi strain SF-1 can effectively promote the bacteria growth. These results indicated that the protease activities may be involved in the survival of bacteria.

16.
Front Nutr ; 7: 69, 2020.
Article in English | MEDLINE | ID: mdl-32596249

ABSTRACT

The aim of this study was to explore the relationships between structure alterations and postharvest berry abscission in "Muscat Kyoho" "Kyoho" and "Nanyu" table grapes stored for 0, 3, or 6 days at room temperature. Microstructure analysis showed that a large number of the stalk-berry junction cells of "Muscat Kyoho" and "Kyoho" were lignified and suberized at 0 day, whereas these events seldom occurred in "Nanyu."Furthermore, the berry brush cells of the three varieties, especially those of "Nanyu," were small and dense. At 3 days, the numbers of lignified and suberized cells of "Muscat Kyoho" and "Kyoho" were reduced, and the cells had degraded, ruptured, and disappeared by 6 days. The berry brush cells of "Muscat Kyoho" and "Kyoho" were larger and more loosely arranged than were those of "Nanyu." Ultrastructure analysis showed that the cells increased in size from small to large and became loosely arranged; the smallest changes were observed in "Nanyu." The cells of "Muscat Kyoho" and "Kyoho" were hydrolyzed, liquated, and covered by granular substances at 6 days, and these features were especially prominent in "Muscat Kyoho." The detachment force of grapes declined steadily (p < 0.05) and was accompanied by an increase in berry abscission. "Nanyu" maintained the highest detachment force and the lowest berry abscission during storage (p < 0.05), followed by "Kyoho" and "Muscat Kyoho." Structural alterations were directly related to berry abscission and correlated inversely with detachment force, with the greatest alterations occurring in "Muscat Kyoho," followed by "Kyoho" and then "Nanyu."

17.
Int J Biol Macromol ; 149: 246-255, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31958556

ABSTRACT

The pasting behavior of rice starch and its relationship with cooking properties of rice have been extensively studied. However, the viscosity changes of rice starch and flour under conventional cooking mode and high temperature and high pressure (HTHP) mode remain unknown. In this study, three typical rice starches and seven rice flours of different types and varieties were used to evaluate the effect of cooking modes on their pasting behaviors. A detailed discussion about the relationships among chemical composition, thermal properties, and crystallinity were conducted to explain the different pasting behaviors of the rice samples. The pasting behavior of rice starch was found to be similar with rice flour under standard and conventional heating modes, while remarkably different when treated at different HTHP levels, especially for sticky rice flour. The morphological changes of rice samples at 95 °C and 120 °C confirmed that high temperature long time heating caused extending of molecules, which exhibited layered structure at 120 °C. The rice flour samples showed different morphologies after heating at different modes due to varied amylose content and crystallinity, which contributed to different pasting behavior. These results provide useful information for developing strategies to control rice cooking and improve eating quality.


Subject(s)
Amylose/chemistry , Flour , Oryza/chemistry , Starch/chemistry , Cooking , Heating , Hot Temperature , Viscosity
18.
World J Pediatr ; 16(1): 99-110, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31102153

ABSTRACT

BACKGROUND: Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in childhood driven by aberrant pathways of T-cell activation. T helper 17 (Th17)/regulatory T cell (Treg) imbalance plays critical roles in the pathogenesis of arthritis. MicroRNA-125b (miR-125b) was upregulated after the activation of the initial CD4+ T cells, and could regulate the differentiation of CD4+ T cells. However, the effects of miR-125b on Th17/Treg imbalance and differentiation of Th17/Treg cells remain unknown. METHODS: In this study, we evaluated the expression of miR-125b in the peripheral blood mononuclear cells (PBMCs) of children with JIA, and the relationship of miR-125b with Th17/Treg imbalance. Then, we used lentivirus vector-mediated overexpression technology to investigate the regulatory function of miR-125b in CD4+ T cells or dendritic cell/CD4+ T co-culture system. RESULTS: Decreased miR-125b expression in PBMCs and CD4+ T cells of JIA patients was negatively correlated with the ratio of Th17/Treg cells. It also correlated negatively with retinoic acid receptor-related orphan receptor γt but positively with Forkhead box protein 3 at transcriptional levels. Furthermore, we found that miR-125b overexpression inhibited Th17 cell differentiation, whereas facilitated the differentiation of Treg cells. MiR-125b upregulation led to the decrease of Th17-secreting cytokines but the increase of the Treg-secreting cytokines. CONCLUSIONS: Our results demonstrate that miR-125b participated in regulating Th17/Treg cell differentiation and imbalance in JIA patients. These findings provide novel insight into the critical role of miR-125b in the Th17/Treg imbalance of JIA, and raise the distinct possibility that miR-125b may prove to be a potential therapeutic target for JIA.


Subject(s)
Arthritis, Juvenile/metabolism , MicroRNAs/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Case-Control Studies , Cell Differentiation , Child , Coculture Techniques , Dendritic Cells/metabolism , Female , Humans , Male , Mice
19.
Int J Biol Macromol ; 146: 1060-1068, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31739049

ABSTRACT

The effects of adding guar and xanthan gums on the pasting and gel properties of high-amylose corn starches, Hylon V (~50% amylose content) and NF-CG170 (~71% amylose content), were studied with waxy corn starch as a control, using an ultra-high temperature heating process (up to 130 °C) to gelatinize starches. Interaction between dispersed amylose and hydrocolloids contributed to the earlier onset of viscosity increase during pasting process (lower pasting temperatures) and strong synergistic effects in the peak, setback, and final viscosities with high-amylose starches, phenomena that were more pronounced when amylose content was higher. Conversely, addition of guar and xanthan gums to waxy corn starch resulted in higher pasting temperatures. After held at 5 °C for 2 h, the gelatinized high-amylose starch/hydrocolloid formed stronger and more elastic gels (higher G' and tanδ) with denser microstructure and thicker gel skeleton, compared to starch alone. Compared to xanthan gum, guar gum displayed a much stronger synergistic effect with Hylon V in gel strength, while their difference in synergistic effect was less pronounced with NF-CG170, indicating that amylose dominated gel properties when at a high content (i.e., ~ 71% in starch).


Subject(s)
Amylose/chemistry , Galactans/chemistry , Gels/chemistry , Mannans/chemistry , Plant Gums/chemistry , Polysaccharides, Bacterial/chemistry , Starch/chemistry , Zea mays/chemistry , Elasticity , Particle Size , Rheology , Viscosity
20.
Int J Biol Macromol ; 145: 965-973, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31614157

ABSTRACT

Naturally fermented and sundried tapioca starch is reportedly the traditional material for polvilho azedo and the primary ingredients of gluten-free food items in Brazil. This study aimed to investigate starch structure and expansion rate, high rate is acclaimed in baking application, changes of tapioca starch and potato starch during combinatorial fermentation and drying. The rate of expansion changed from 3.37 mL/g in native tapioca starch to 3.71 mL/g in fermented oven-dried tapioca starch and 6.97 mL/g in fermented sun-dried tapioca starch, while potato starch sample displayed lesser expansion on all treatments. Rapid viscosity analysis, size-exclusion chromatography, X-ray diffraction (XRD), and attenuated total reflectance Fourier transform infrared (ATR-FTIR) and electron paramagnetic resonance spectrometry (EPR) were performed to determine the structure and investigate its relationship with the expansion rate. Fermentation attacked amorphous area and cleaved glycosidic bonds. Sunlight exposure facilitated complex interactions, and crosslinking increased the molecular weight distribution (MWD) in fermented sun-dried potato starch and led to depolymerization in tapioca starch. EPR revealed an initial free radical distribution in both starches, and our results show that intensity changes in tapioca starch are essential for a high expansion capacity.


Subject(s)
Desiccation/methods , Fermentation , Manihot/chemistry , Solanum tuberosum/chemistry , Starch/chemistry , Amylopectin/chemistry , Brazil , Fermented Foods , Glutens , Lactobacillus plantarum , Molecular Weight , Solar System , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL