Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
J Hazard Mater ; 474: 134714, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38820754

ABSTRACT

BACKGROUND: The potential health effects of airborne polycyclic aromatic hydrocarbons (PAHs) among general population remained extensively unstudied. This study sought to investigate the association of short-term exposure to low-level total and 7 carcinogenic PAHs with mortality risk. METHODS: We conducted an individual-level time-stratified case-crossover study in Jiangsu province of eastern China, by investigating over 2 million death cases during 2016-2019. Daily concentrations of total PAH and its 7 carcinogenic species including benzo[a]anthracene (BaA), benzo[a]pyrene (BaP), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), chrysene (Chr), dibenz[a,h]anthracene (DahA), and indeno[1,2,3-cd]pyrene (IcdP), predicted by well-validated spatiotemporal models, were assigned to death cases according to their residential addresses. We estimated mortality risk associated with short-term exposure to increase of an interquartile range (IQR) for aforementioned PAHs using conditional logistic regression. RESULTS: An IQR increase (16.9 ng/m3) in 2-day (the current and prior day) moving average of total PAH concentration was associated with risk increases of 1.90% (95% confidence interval [CI]: 1.71-2.09) in all-cause mortality, 1.90% (95% CI: 1.70-2.10) in nonaccidental mortality, 2.01% (95% CI: 1.72-2.29) in circulatory mortality, and 2.53% (95% CI: 2.03-3.02) in respiratory mortality. Risk increases of cause-specific mortality ranged between 1.42-1.90% for BaA (IQR: 1.6 ng/m3), 1.94-2.53% for BaP (IQR: 1.6 ng/m3), 2.45-3.16% for BbF (IQR: 2.8 ng/m3), 2.80-3.65% for BkF (IQR: 1.0 ng/m3), 1.36-1.77% for Chr (IQR: 1.8 ng/m3), 0.77-1.24% for DahA (IQR: 0.8 ng/m3), and 2.96-3.85% for IcdP (IQR: 1.7 ng/m3). CONCLUSIONS: This study provided suggested evidence for heightened mortality risk in relation to short-term exposure to airborne PAHs in general population. Our findings suggest that airborne PAHs may pose a potential threat to public health, emphasizing the need of more population-based evidence to enhance the understanding of health risk under the low-dose exposure scenario.

2.
J Hazard Mater ; 471: 134158, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38636234

ABSTRACT

BACKGROUND: Long-term ozone (O3) exposure has been associated with cardiovascular disease (CVD) mortality in mounting cohort evidence, yet its relationship with incident CVD was poorly understood, especially in low- and middle-income countries (LMICs) experiencing high ambient air pollution. METHODS: We carried out a nationwide perspective cohort study from 2010 through 2018 by dynamically enrolling 36948 participants across Chinese mainland. Warm-season (April-September) O3 concentrations were estimated using satellite-based machine-learning models with national coverage. Cox proportional hazards model with time-varying exposures was employed to evaluate the association of long-term O3 exposure with incident CVD (overall CVD, hypertension, stroke, and coronary heart disease [CHD]). Assuming causality, a counterfactual framework was employed to estimate O3-attributable CVD burden based on the exposure-response (E-R) relationship obtained from this study. Decomposition analysis was utilized to quantify the contributions of four key direct driving factors (O3 exposure, population size, age structure, and incidence rate) to the net change of O3-related CVD cases between 2010 and 2018. RESULTS: A total of 4428 CVD, 2600 hypertension, 1174 stroke, and 337 CHD events were reported during 9-year follow-up. Each 10-µg/m³ increase in warm-season O3 was associated with an incident risk of 1.078 (95% confidence interval [CI]: 1.050-1.106) for overall CVD, 1.098 (95% CI: 1.062-1.135) for hypertension, 1.073 (95% CI: 1.019-1.131) for stroke, and 1.150 (95% CI: 1.038-1.274) for CHD, respectively. We observed no departure from linear E-R relationships of O3 exposure with overall CVD (Pnonlinear= 0.22), hypertension (Pnonlinear= 0.19), stroke (Pnonlinear= 0.70), and CHD (Pnonlinear= 0.44) at a broad concentration range of 60-160 µg/m3. Compared with rural dwellers, those residing in urban areas were at significantly greater O3-associated incident risks of overall CVD, hypertension, and stroke. We estimated 1.22 million (10.6% of overall CVD in 2018) incident CVD cases could be attributable to ambient O3 pollution in 2018, representing an overall 40.9% growth (0.36 million) compared to 2010 (0.87 million, 9.7% of overall CVD in 2010). This remarkable rise in O3-attributable CVD cases was primary driven by population aging (+24.0%), followed by increase in O3 concentration (+10.5%) and population size (+6.7%). CONCLUSIONS: Long-term O3 exposure was associated with an elevated risk and burden of incident CVD in Chinese adults, especially among urban dwellers. Our findings underscored policy priorities of implementing joint control measures for fine particulate matter and O3 in the context of accelerated urbanization and population aging in China.


Subject(s)
Air Pollutants , Cardiovascular Diseases , Environmental Exposure , Ozone , Humans , Ozone/analysis , China/epidemiology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/chemically induced , Middle Aged , Male , Environmental Exposure/adverse effects , Female , Air Pollutants/analysis , Air Pollutants/toxicity , Incidence , Cohort Studies , Aged , Adult , Air Pollution/adverse effects , Air Pollution/analysis
3.
Environ Res ; 252(Pt 1): 118868, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38580003

ABSTRACT

BACKGROUND: Previous research has shown that lack of leisure activities, either outdoor or social activities, impedes cognitive function. However, the interrelationship between poor cognition and deficient activities is understudied. In addition, whether exposure to air pollution, such as PM2.5, can accelerate the detrimental 'inactivity-poor cognition' cycle, is worthy of investigation. METHODS: We used data from the 2008, 2011, 2014, and 2018 waves of the Chinese Longitudinal Healthy Longevity Survey (CLHLS). We assessed the frequency of outdoor or social activities at each wave. The cognitive function was examined using a China-Modified Mini-mental State Examination. We estimated the residential exposure to fine particular matter (PM2.5) via a satellite-based model. We applied cross-lagged panel (CLP) model to examine the bi-directional relationship between outdoor or social activities and cognitive function. We then examined the effect of PM2.5 exposure with sequent cognitive function and activities using generalized estimation equation (GEE) model. FINDINGS: Overall, we observed significant bi-directional associations between outdoor or social activities and cognitive function. Participants with better cognitive function in the last wave were more likely to engage in outdoor or social activities in the following wave (outdoor activities: ß = 0.37, 95% CI [0.27,0.48], P < 0.01; social activities: ß = 0.05, 95% CI [0.02,0.09] P < 0.01). Meanwhile, higher engagement in outdoor or social activities in the last wave was associated with more favorable cognitive function in the following wave (outdoor activities: ß = 0.06, 95% CI [0.03,0.09], P < 0.01; social activities: ß = 0.10, 95% CI [0.03,0.18], P < 0.01). Notably, an increase in PM2.5 exposure during the preceding year was significantly associated with a declining cognitive function (ß = -0.05, 95% CI [-0.08,-0.03], P < 0.01), outdoor activities (ß = -0.02, 95% CI [-0.04, -0.01], P < 0.01) and social activities (ß = -0.02, 95% CI [-0.02, -0.01], P < 0.01) in the current year; the lagged effects of the PM2.5 exposure in the past year of the last wave on activities and cognitive function of the following wave were also observed. INTERPRETATION: Our findings not only indicate the bi-directional links between the frequency of outdoor or social activities and cognitive function, but also report that PM2.5 exposure plays a role in catalyzing the detrimental inactivity-poor cognition cycle. Future research should investigate whether the policy-driven interventions, such as clean air policies, can break the unfavorable activity-cognition cycle, and thereby promoting health from the dual gains in leisure activities and cognition.


Subject(s)
Air Pollutants , Air Pollution , Cognition , Environmental Exposure , Particulate Matter , Particulate Matter/toxicity , Humans , Cognition/drug effects , Male , Female , China , Aged , Environmental Exposure/adverse effects , Air Pollution/adverse effects , Air Pollutants/toxicity , Air Pollutants/analysis , Longitudinal Studies , Aged, 80 and over , Middle Aged , Leisure Activities
4.
Environ Sci Ecotechnol ; 20: 100408, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38560758

ABSTRACT

Green-blue spaces (GBS) are pivotal in mitigating thermal discomfort. However, their management lacks guidelines rooted in epidemiological evidence for specific planning and design. Here we show how various GBS types modify the link between non-optimal temperatures and cardiovascular mortality across different thermal extremes. We merged fine-scale population density and GBS data to create novel GBS exposure index. A case time series approach was employed to analyse temperature-cardiovascular mortality association and the effect modifications of type-specific GBSs across 1085 subdistricts in south-eastern China. Our findings indicate that both green and blue spaces may significantly reduce high-temperature-related cardiovascular mortality risks (e.g., for low (5%) vs. high (95%) level of overall green spaces at 99th vs. minimum mortality temperature (MMT), Ratio of relative risk (RRR) = 1.14 (95% CI: 1.07, 1.21); for overall blue spaces, RRR = 1.20 (95% CI: 1.12, 1.29)), while specific blue space types offer protection against cold temperatures (e.g., for the rivers at 1st vs MMT, RRR = 1.17 (95% CI: 1.07, 1.28)). Notably, forests, parks, nature reserves, street greenery, and lakes are linked with lower heat-related cardiovascular mortality, whereas rivers and coasts mitigate cold-related cardiovascular mortality. Blue spaces provide greater benefits than green spaces. The severity of temperature extremes further amplifies GBS's protective effects. This study enhances our understanding of how type-specific GBS influences health risks associated with non-optimal temperatures, offering valuable insights for integrating GBS into climate adaptation strategies for maximal health benefits.

5.
BMC Geriatr ; 24(1): 288, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539094

ABSTRACT

BACKGROUND: This study aimed to explore the associations between household air pollution (HAP), measured by cooking fuel use, sensory impairments (SI), and their transitions in Chinese middle-aged and older adults. METHODS: Participants were recruited from the 2011 China Health and Retirement Longitudinal Study (CHARLS) and were subsequently followed up until 2018. Data on SI were collected by self-reported hearing and vision impairments, which were divided into three categories: non-SI, single SI (hearing or vision impairment), and dual SI (DSI). Cooking fuels, including solid and clean fuels, are proxies for HAP. The transitions of cooking fuels and SI refer to the switching of the fuel type or SI status from baseline to follow-up. Cox proportional hazard regression models were used to explore associations, and hazard ratios (HRs) and 95% confidence intervals (CI) were used to evaluate the strength of the association. RESULTS: The prevalence of non-SI, single SI, and DSI was 59.6%, 31.8%, and 8.6%, respectively, among the 15,643 participants at baseline in this study. Over a median follow-up of 7.0 years, 5,223 worsening SI transitions were observed. In the fully adjusted model, solid fuel use for cooking was associated with a higher risk of worsening SI transitions, including from non-SI to single SI (HR = 1.08, 95% CI = 1.01-1.16) and from non-SI to DSI (HR = 1.26, 95% CI = 1.09-1.47), but not from single SI to DSI. In addition, compared to those who always used solid fuels, participants who switched from solid to clean fuel for cooking appeared to have attenuated the risk of worsening SI transitions. The statistical significance of the associations remained in the set of sensitivity analyses. CONCLUSION: Solid fuel use was associated with higher risks of worsening SI transitions, while converting the type of cooking fuel from solid to clean fuels may reduce the risk of worsening SI transitions. Our study suggests that tailored clean fuel interventions, especially in developing countries, should be implemented to prevent sensory impairments and hence reduce the burden of sensory impairment-related disability.


Subject(s)
Cooking , Humans , Middle Aged , Aged , Cohort Studies , Risk Factors , Longitudinal Studies , Prospective Studies , China/epidemiology
6.
J Hazard Mater ; 468: 133785, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38367441

ABSTRACT

BACKGROUND: Although growing evidence has shown independent links of long-term exposure to fine particulate matter (PM2.5) with cognitive impairment, the effects of its constituents remain unclear. This study aims to explore the associations of long-term exposure to ambient PM2.5 constituents' mixture with cognitive impairment in Chinese older adults, and to further identify the main contributor. METHODS: 15,274 adults ≥ 65 years old were recruited by the Chinese Longitudinal Healthy Longevity Study (CLHLS) and followed up through 7 waves during 2000-2018. Concentrations of ambient PM2.5 and its constituents (i.e., black carbon [BC], organic matter [OM], ammonium [NH4+], sulfate [SO42-], and nitrate [NO3-]) were estimated by satellite retrievals and machine learning models. Quantile-based g-computation model was employed to assess the joint effects of a mixture of 5 PM2.5 constituents and their relative contributions to cognitive impairment. Analyses stratified by age group, sex, residence (urban vs. rural), and region (north vs. south) were performed to identify vulnerable populations. RESULTS: During the average 3.03 follow-up visits (89,296.9 person-years), 4294 (28.1%) participants had developed cognitive impairment. The adjusted hazard ratio [HR] (95% confidence interval [CI]) for cognitive impairment for every quartile increase in mixture exposure to 5 PM2.5 constituents was 1.08 (1.05-1.11). BC held the largest index weight (0.69) in the positive direction in the qg-computation model, followed by OM (0.31). Subgroup analyses suggested stronger associations in younger old adults and rural residents. CONCLUSION: Long-term exposure to ambient PM2.5, particularly its constituents BC and OM, is associated with an elevated risk of cognitive impairment onset among Chinese older adults.


Subject(s)
Air Pollutants , Air Pollution , Cognitive Dysfunction , Humans , Aged , Particulate Matter/toxicity , Cohort Studies , Air Pollutants/toxicity , Environmental Exposure , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/epidemiology , China/epidemiology , Air Pollution/adverse effects
7.
Environ Res ; 247: 118165, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38215923

ABSTRACT

BACKGROUND: Airborne particulate matter pollution has been linked to occurrence of childhood allergic rhinitis (AR). However, the relationships between exposure to particulate matter with an aerodynamic diameter ≤1 µm (PM1) during early life (in utero and first year of life) and the onset of childhood AR remain largely unknown. This study aims to investigate potential associations of in utero and first-year exposures to size-segregated PMs, including PM1, PM1-2.5, PM2.5, PM2.5-10, and PM10, with childhood AR. METHODS: We investigated 29286 preschool children aged 3-6 years in 7 Chinese major cities during 2019-2020 as the Phase II of the China Children, Families, Health Study. Machine learning-based space-time models were utilized to estimate early-life residential exposure to PM1, PM2.5, and PM10 at 1 × 1-km resolutions. The concentrations of PM1-2.5 and PM2.5-10 were calculated by subtracting PM1 from PM2.5 and PM2.5 from PM10, respectively. Multiple mixed-effects logistic models were used to assess the odds ratios (ORs) and 95% confidence intervals (CIs) of childhood AR associated with per 10-µg/m3 increase in exposure to particulate air pollution during in utero period and the first year of life. RESULTS: Among the 29286 children surveyed (mean ± standard deviation, 4.9 ± 0.9 years), 3652 (12.5%) were reported to be diagnosed with AR. Average PM1 concentrations during in utero period and the first year since birth were 36.3 ± 8.6 µg/m3 and 33.1 ± 6.9 µg/m3, respectively. Exposure to PM1 and PM2.5 during pregnancy and the first year of life was associated with an increased risk of AR in children, and the OR estimates were higher for each 10-µg/m3 increase in PM1 than for PM2.5 (e.g., 1.132 [95% CI: 1.022-1.254] vs. 1.079 [95% CI: 1.014-1.149] in pregnancy; 1.151 [95% CI: 1.014-1.306] vs. 1.095 [95% CI: 1.008-1.189] in the first year of life). No associations were observed between AR and both pre- and post-natal exposure to PM1-2.5, indicating that PM1 rather than PM1-2.5 contributed to the association between PM2.5 and childhood AR. In trimester-stratified analysis, childhood AR was only found to be associated with exposure to PM1 (OR = 1.077, 95% CI: 1.027-1.128), PM2.5 (OR = 1.048, 95% CI: 1.018-1.078), and PM10 (OR = 1.032, 95% CI: 1.007-1.058) during the third trimester of pregnancy. Subgroup analysis suggested stronger PM-AR associations among younger (<5 years old) and winter-born children. CONCLUSIONS: Prenatal and postnatal exposures to ambient PM1 and PM2.5 were associated with an increased risk of childhood AR, and PM2.5-related hazards could be predominantly attributed to PM1. These findings highlighted public health significance of formulating air quality guideline for ambient PM1 in mitigating children's AR burden caused by particulate air pollution.


Subject(s)
Air Pollutants , Air Pollution , Rhinitis, Allergic , Child, Preschool , Pregnancy , Female , Humans , Particulate Matter/analysis , Air Pollutants/toxicity , Cross-Sectional Studies , Environmental Exposure/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Rhinitis, Allergic/etiology , Rhinitis, Allergic/chemically induced , China/epidemiology , Dust/analysis
8.
Environ Sci Technol ; 58(4): 1813-1822, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38237043

ABSTRACT

Previous studies have reported the association between particulate matter (PM) and childhood allergic rhinitis (AR). However, it is unclear whether food allergy (FA) modifies the PM-AR association. We aimed at evaluating the effect of the modification of FA on PM-AR association in preschool children. We adopted a cross-sectional study and conducted a questionnaire survey among preschool children aged 3-6 years in 7 cities in China from June 2019 to June 2020 to collect information on AR and FA. We used a combination of multilevel logistic regression and restricted cubic spline functions to quantitatively assess whether FA modifies the associations between size-specific PM exposure (1 × 1 km) and the risk of AR. The adjusted odds ratios (ORs) for AR among the children with FA as per a 10 µg/m3 increase in early life PM1, PM2.5, and PM10 were significantly higher than the corresponding ORs among the children without FA [e.g., OR: 1.58, 95% CI: (1.32, 1.90) vs 1.29, 95% CI: (1.18, 1.41), per 10 µg/m3 increase in PM1]. The interactions between FA and size-specific PM exposure and their effects on AR were statistically significant (all p-int < 0.001). FA, as an important part of the allergic disease progression, may modify the PM-AR association in preschool children.


Subject(s)
Air Pollutants , Air Pollution , Food Hypersensitivity , Rhinitis, Allergic , Child , Child, Preschool , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Cross-Sectional Studies , Rhinitis, Allergic/epidemiology , China/epidemiology , Environmental Exposure/analysis , Air Pollution/analysis
9.
Ecotoxicol Environ Saf ; 270: 115843, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38141337

ABSTRACT

BACKGROUND: Cohort evidence linking long-term ozone (O3) exposure to mortality remained largely mixed worldwide and was extensively deficient in densely-populated Asia. This study aimed to assess the long-term effects of O3 exposure on all-cause mortality among Chinese adults, as well as to examine potential regional heterogeneity across the globe. METHODS: A national dynamic cohort of 42153 adults aged 16+ years were recruited from 25 provinces across Chinese mainland and followed up during 2010-2018. Annual warm-season (April-September) O3 and year-round co-pollutants (i.e., nitrogen dioxide [NO2] and fine particulate matter [PM2.5]) were simulated through validated spatial-temporal prediction models and were assigned to each enrollee in each calendar year. Cox proportional hazards models with time-varying exposures were employed to assess the O3-mortality association. Concentration-response (C-R) curves were fitted by natural cubic spline function to investigate the potential nonlinear association. Both single-pollutant model and co-pollutant models additionally adjusting for PM2.5 and/or NO2 were employed to examine the robustness of the estimated association. The random-effect meta-analysis was adopted to pool effect estimates from the current and prior population-based cohorts (n = 29), and pooled C-R curves were fitted through the meta-smoothing approach by regions. RESULTS: The study population comprised of 42153 participants who contributed 258921.5 person-years at risk (median 6.4 years), of whom 2382 death events occurred during study period. Participants were exposed to an annual average of 51.4 ppb (range: 22.7-74.4 ppb) of warm-season O3 concentration. In the single-pollutant model, a significantly increased hazard ratio (HR) of 1.098 (95% confidence interval [CI]: 1.023-1.179) was associated with a 10-ppb rise in O3 exposure. Associations remained robust to additional adjustments of co-pollutants, with HRs of 1.099 (95% CI: 1.023-1.180) in bi-pollutant model (+PM2.5) and 1.093 (95% CI: 1.018-1.174) in tri-pollutant model (+PM2.5+NO2), respectively. A J-shaped C-R relationship was identified among Chinese general population, suggesting significant excess mortality risk at high ozone exposure only. The combined C-R curves from Asia (n = 4) and North America (n = 17) demonstrated an overall increased risk of all-cause mortality with O3 exposure, with pooled HRs of 1.124 (95% CI: 0.966-1.307) and 1.023 (95% CI: 1.007-1.039) per 10-ppb rise, respectively. Conversely, an opposite association was observed in Europe (n = 8, HR: 0.914 [95% CI: 0.860-0.972]), suggesting significant heterogeneity across regions (P < 0.01). CONCLUSIONS: This study provided national evidence that high O3 exposure may curtail long-term survival of Chinese general population. Great between-region heterogeneity of pooled O3-mortality was identified across North America, Europe, and Asia.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Ozone , Adult , Humans , Air Pollution/analysis , Air Pollutants/analysis , Nitrogen Dioxide/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Ozone/toxicity , Particulate Matter/toxicity , Seasons , China/epidemiology , Environmental Pollutants/analysis
10.
Nat Commun ; 14(1): 7595, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37989742

ABSTRACT

The nexus between prenatal greenspace exposure and low birth weight (LBW) remains largely unstudied in low- and middle-income countries (LMICs). We investigated a nationwide retrospective cohort of 4,021,741 live births (263,728 LBW births) across 31 provinces in Iran during 2013-2018. Greenness exposure during pregnancy was assessed using satellite-based normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). We estimated greenness-LBW associations using multiple logistic models, and quantified avoidable LBW cases under scenarios of improved greenspace through counterfactual analyses. Association analyses provide consistent evidence for approximately L-shaped exposure-response functions, linking 7.0-11.5% declines in the odds of LBW to each 0.1-unit rise in NDVI/EVI with multiple buffers. Assuming causality, 3931-5099 LBW births can be avoided by achieving greenness targets of mean NDVI/EVI, amounting to 4.4-5.6% of total LBW births in 2015. Our findings suggest potential health benefits of improved greenspace in lowering LBW risk and burden in LMICs.


Subject(s)
Infant, Low Birth Weight , Live Birth , Infant, Newborn , Pregnancy , Female , Humans , Birth Weight , Retrospective Studies , Iran/epidemiology
11.
BMJ Glob Health ; 8(9)2023 09.
Article in English | MEDLINE | ID: mdl-37730248

ABSTRACT

INTRODUCTION: Heatwave is a major global health concern. Many countries including China suffered a record-breaking heatwave during the summer of 2022, which may have a significant effect on population health or health information-seeking behaviours but is yet to be examined. METHODS: We derived health information-seeking data from the Baidu search engine (similar to Google search engine). The data included city-specific daily search queries (also referred to Baidu Search Index) for heat-sensitive diseases from 2021 to 2022, including heatstroke, hospital visits, cardiovascular diseases and diabetes, respiratory diseases, mental health and urological diseases. For each city, the record-breaking heatwave days in 2022 were matched to days in the same calendar month in 2021. RESULTS: The 2022 record-breaking heatwave hit most cities (83.64%) in Mainland China. The average heatwave duration was 13 days and the maximum temperature was 3.60°C higher than that in 2021 (p<0.05). We observed increased population behaviours of seeking information on respiratory diseases (RR=1.014, 95% CI: 1.008 to 1.020), urological diseases (RR=1.011, 95% CI: 1.006 to 1.016) and heatstroke (RR=1.026, 95% CI: 1.016 to 1.036) associated with the heatwave intensity in 2022 (per 1°C increase). The heatwave duration in 2022 (per 1 day increase) was also associated with an increase in seeking information on cardiovascular diseases and diabetes (RR=1.003, 95% CI: 1.002 to 1.004), urological diseases (RR=1.005, 95% CI: 1.002 to 1.008), mental health (RR=1.009, 95% CI: 1.006 to 1.012) and heatstroke (RR=1.038, 95% CI: 1.032 to 1.043). However, there were substantial geographical variations in the effect of the 2022 heatwave intensity and duration on health information-seeking behaviours. CONCLUSION: This infodemiology study suggests that the 2022 summer unprecedented heatwave in Mainland China has significantly increased population demand for health-related information, especially for heatstroke, urological diseases and mental health. Population-based research of real-time disease data is urgently needed to estimate the negative health impact of the exceptional heatwave in Mainland China and elsewhere.


Subject(s)
Cardiovascular Diseases , Heat Stroke , Humans , Information Seeking Behavior , Cardiovascular Diseases/epidemiology , Infodemiology , China/epidemiology
12.
Ecotoxicol Environ Saf ; 264: 115451, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37703807

ABSTRACT

BACKGROUND: Studies suggested that greenness could reduce death risks related to ambient exposure to particulate matter (PM), while the available evidence was mixed across the globe and substantially exiguous in low- and middle-income countries. By conceiving an individual-level case-crossover study in central China, this analysis primarily aimed to quantify PM-mortality associations and examined the modification effect of greenness on the relationship. METHODS: We investigated a total of 177,058 nonaccidental death cases from 12 counties in central China, 2008-2012. Daily residential exposures to PM2.5 (aerodynamic diameter <2.5 µm), PMc (aerodynamic diameter between 2.5 and 10 µm), and PM10 (aerodynamic diameter <10 µm) were assessed at a 1 × 1-km resolution through satellite-derived machine-learning models. Residential surrounding greenness was assessed using satellite-derived enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) at multiple buffer sizes (250, 500, and 1000 m). To quantify the acute mortality risks associated with short-term exposure to PM2.5, PMc, and PM10, a time-stratified case-crossover design was utilized in conjunction with a conditional logistic regression model in our main analyses. To investigate the effect modification of greenness on PM-mortality associations, we grouped death cases into low, medium, and high greenness levels using cutoffs of 25th and 75th percentiles of NDVI or EVI exposure, and examined potential effect heterogeneity in PM-related mortality risks among these groups. RESULTS: Mean concentrations (standard deviation) on the day of death were 73.8 (33.4) µg/m3 for PM2.5, 43.9 (17.3) µg/m3 for PMc, and 117.5 (44.9) µg/m3 for PM10. Size-fractional PM exposures were consistently exhibited significant associations with elevated risks of nonaccidental and circulatory mortality. For every increase of 10-µg/m3 in PM exposure, percent excess risks of nonaccidental and circulatory mortality were 0.271 (95% confidence interval [CI]: 0.010, 0.533) and 0.487 (95% CI: 0.125, 0.851) for PM2.5 at lag-01 day, 0.731 (95% CI: 0.108, 1.359) and 1.140 (95% CI: 0.267, 2.019) for PMc at lag-02 day, and 0.271 (95% CI: 0.010, 0.533) and 0.386 (95% CI: 0.111, 0.662) for PM10 at lag-01 day, respectively. Compared to participants in the low-level greenness areas, those being exposed to higher greenness were found to be at lower PM-associated risks of nonaccidental and circulatory mortality. Consistent evidence for alleviated risks in medium or high greenness group was observed in subpopulations of female and younger groups (age <75). CONCLUSIONS: Short-term exposure to particulate air pollution was associated with elevated risks of nonaccidental and circulatory death, and individuals residing in higher neighborhood greenness possessed lower risk of PM-related mortality. These findings emphasized the potential public health advantages through incorporating green spaces into urban design and planning.


Subject(s)
Air Pollution , Dust , Female , Humans , Cross-Over Studies , Particulate Matter/toxicity , Air Pollution/adverse effects , China
13.
Environ Int ; 178: 108060, 2023 08.
Article in English | MEDLINE | ID: mdl-37478679

ABSTRACT

BACKGROUND: A number of studies suggested a nexus between long-term exposure to nitrogen dioxide (NO2) and the incidence of cardiovascular disease (CVD), while population-based cohort evidence in low- and middle-income countries was extensively sparse. METHODS: We carried out an 8-year longitudinal study (2010-2018) in a nationwide dynamic cohort of 36,948 Chinese adult participants, who were free of CVD at baseline. Annual average estimates of NO2 exposure were predicted using a well-validated spatiotemporal model and assigned to study participants based on their residential counties. Considering death as a competing risk event, Fine-Gray competing risk models with time-varying exposures at an annual scale were used to quantify incident risks of overall CVD, hypertension, and stroke associated with a 10-µg/m3 rise in NO2 exposure. Using the meta-analysis approach, we performed a pooled analysis of hazard ratio (HR) drawn from this and prior multinational cohort studies for the assessment of attributable burden. NO2-attributable overall CVD incidents in China were evaluated by city and province for years 2010 and 2018, referring to a counterfactual exposure level of 10 µg/m3 (2021 World Health Organization [WHO] air quality guidelines). A decomposition method was used to decompose net change in NO2-attributable CVD incidents during 2010 and 2018 into 3 primary contributions of driving factors (i.e., changes in NO2 exposure, population size, and incidence rate). RESULTS: A total of 4428 overall CVD events (hypertension 2448, stroke 1044) occurred during a median follow-up period of 6.1 years. Annual mean NO2 concentration from 2010 to 2018 was 20.0 µg/m3 (range: 6.9-57.4 µg/m3). An increase of 10-µg/m3 in NO2 was associated with an HR of 1.558 (95% confidence interval [CI]: 1.477, 1.642) for overall CVD, 1.521 (95% CI: 1.419, 1.631) for hypertension, and 1.664 (95% CI: 1.485, 1.865) for stroke. Longitudinal associations of NO2 exposure with incident CVD were nearly linear over the exposure range, suggesting no discernible thresholds. Subgroup analyses indicated significantly higher NO2-associated risks of incident CVD among urban residents and overweight/obese individuals. According to pooled HR of NO2-CVD association (1.108, 95% CI: [1.007, 1.219]) from 10 multinational cohort studies, we estimated totally 1.44 million incident CVD cases attributable to NO2 exposure in 2018, representing a substantial decrease of 0.41 million compared to the estimate in 2010 (1.85 million) in mainland of China. Nationally, from 2010 to 2018, the attributable incident cases greatly dropped by 22.4%, which was dominantly driven by declined NO2 concentration (-47.1%) that had offset far from the rise of CVD incidence rate (+19.6%) and population growth (+5.1%). CONCLUSIONS: This study provided nationwide cohort evidence for elevated risks of CVD incidence associated with long-term ambient NO2 exposure among Chinese adults, particularly in urban areas and among overweight/obese individuals. Our findings highlighted that reducing NO2 exposure below 2021 WHO guideline could help prevent a substantial portion of incident CVD cases in China.


Subject(s)
Air Pollutants , Air Pollution , Cardiovascular Diseases , Hypertension , Humans , Adult , Cardiovascular Diseases/epidemiology , Air Pollutants/analysis , Particulate Matter/analysis , Nitrogen Dioxide/analysis , Longitudinal Studies , East Asian People , Overweight , Air Pollution/analysis , Obesity , Environmental Exposure/adverse effects , Environmental Exposure/analysis
14.
Sci Total Environ ; 899: 165658, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37478950

ABSTRACT

BACKGROUND: Many studies have shown that the onset of schizophrenia peaked in certain months within a year and the local weather conditions could affect the morbidity risk of schizophrenia. This study aimed to conduct a systematic analysis of schizophrenia seasonality in different countries of the world and to explore the effects of weather factors globally. METHODS: We searched three databases (PubMed, Web of Science, and China National Knowledge Infrastructure) for eligible studies published up to September 2022. Schizophrenia seasonality was compared between hemispheres and within China. A meta-analysis was conducted to pool excess risk (ER, absolute percentage increase in risk) of the onset of schizophrenia associated with various weather factors including temperature (an increase or decrease of temperature as a reflection of high or low temperature; heatwave; temperature variation), precipitation, etc. RESULTS: We identified 84 relevant articles from 22 countries, mainly in China. The seasonality analysis found that the onset of schizophrenia mostly peaked in the cold season in the southern hemisphere but in the warm season in the northern hemisphere. Interestingly in China, schizophrenia seasonality presented two peaks, respectively in the late cold and warm seasons. The meta-analysis further revealed an increased risk of schizophrenia after short-term exposure to high temperature [ER%: 0.45 % (95 % confidence interval (CI): 0.14 % to 0.76 %)], low temperature [ER%: 0.52 % (95%CI: 0.29 % to 0.75 %)], heatwave [ER%: 7.26 % (95%CI: 4.45 % to 10.14 %)], temperature variation [ER%: 1.02 % (95%CI: 0.55 % to 1.50 %)], extreme precipitation [ER%: 3.96 % (95%CI: 2.29 % to 5.67 %)]. The effect of other weather factors such as sunlight on schizophrenia was scarcely investigated with inconsistent findings. CONCLUSION: This study provided evidence of intra- and inter-country variations in schizophrenia seasonality, especially the double-peak seasons in China. Exposure to local weather conditions mainly temperature changes and precipitation could affect the onset risk of schizophrenia.


Subject(s)
Schizophrenia , Humans , Seasons , Schizophrenia/epidemiology , Weather , Temperature , Cold Temperature
15.
J Environ Sci (China) ; 133: 60-69, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37451789

ABSTRACT

Existing evidence suggested that short-term exposure to fine particulate matter (PM2.5) may increase the risk of death from myocardial infarction (MI), while PM2.5 constituents responsible for this association has not been determined. We collected 12,927 MI deaths from 32 counties in southern China during 2011-2013. County-level exposures of ambient PM2.5 and its 5 constituents (i.e., elemental carbon (EC), organic carbon (OC), sulfate (SO42-), ammonium (NH4+), and nitrate (NO3-)) were aggregated from gridded datasets predicted by Community Multiscale Air Quality Modeling System. We employed a space-time-stratified case-crossover design and conditional logistic regression models to quantify the association of MI mortality with short-term exposure to PM2.5 and its constituents across various lag days. Over the study period, the daily mean PM2.5 mass concentration was 77.8 (standard deviation (SD) = 72.7) µg/m3. We estimated an odds ratio of 1.038 (95% confidence interval (CI): 1.003-1.074), 1.038 (1.013-1.063) and 1.057 (1.023-1.097) for MI mortality associated with per interquartile range (IQR) increase in the 3-day moving-average exposure to PM2.5 (IQR = 76.3 µg/m3), EC (4.1 µg/m3) and OC (9.1 µg/m3), respectively. We did not identify significant association between MI death and exposure to water-soluble ions (SO42-, NH4+ and NO3-). Likelihood ratio tests supported no evident violations of linear assumptions for constituents-MI associations. Subgroup analyses showed stronger associations between MI death and EC/OC exposure in the elderly, males and cold months. Short-term exposure to PM2.5 constituents, particularly those carbonaceous aerosols, was associated with increased risks of MI mortality.


Subject(s)
Air Pollutants , Air Pollution , Myocardial Infarction , Humans , Male , Aged , Particulate Matter/toxicity , Particulate Matter/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Air Pollution/analysis , Myocardial Infarction/epidemiology , China , Carbon/analysis , Environmental Exposure/analysis
16.
Front Nutr ; 10: 1218453, 2023.
Article in English | MEDLINE | ID: mdl-37457980

ABSTRACT

Background: Sarcopenia is a common geriatric disease. Many dietary factors may contribute to the development of sarcopenia. Few studies have been conducted on dietary diversity and sarcopenia in Chinese older adults. Among a nationwide sample, the objective of this study is to assess the association between the dietary diversity score (DDS) and the prevalence of possible sarcopenia. We considered the different patterns of dietary diversity in relation to possible sarcopenia. Methods: We conducted this analysis utilizing the cross-sectional data from the 2012, 2014, and 2018 waves of the Chinese longitudinal healthy longevity survey (CLHLS). A standard developed by the Asian Working Group for Sarcopenia 2019 (AWGS2019) was used to assess the possibility of sarcopenia. On the basis of the DDS generated by previous studies, we have constructed four new indicators as follows: total diet, animal-based diet, plant-based diet, and plant-based diet without the consumption of legume products and nuts. We used the generalized estimation equation (GEE) model to evaluate the associations between the DDS of the total diet, animal-based diet, plant-based diet, and plant-based diet without the intake of legume products and nuts and possible sarcopenia. These associations were statistically adjusted for a variety of potential confounders. Sensitivity analysis was performed by excluding some participants who were long-term bedridden, had Alzheimer's disease, or were terminally ill. Results: The analysis included 6,624 participants (mean age 83.4 years at baseline). In our study, we found that participants with a higher DDS of the total diet (OR = 0.62; 95% CI: 0.51-0.77), animal-based diet (OR = 0.62; 95% CI: 0.49-0.79), and plant-based diet (OR = 0.64;95% CI: 0.51-0.80) were at a lower risk of developing sarcopenia. In sensitivity analyses, the associations remained unchanged. Conclusion: Taking a diversified diet, including animal foods, may reduce the risk of developing sarcopenia. According to the findings of this study, adopting a diversified diet might reduce the risk of sarcopenia for older adults.

17.
Int J Hyg Environ Health ; 251: 114185, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37167761

ABSTRACT

BACKGROUND: Epidemiological studies have linked long-term ozone (O3) exposure with depression in developed countries. However, available literature is sparse and exists great heterogeneities. We aimed to investigate the association of long-term O3 exposure with depression among Chinese middle-aged and older adults. METHODS: We designed a repeated measurement study based on longitudinal data from four waves (2011, 2013, 2015, and 2018) of the China Health and Retirement Longitudinal Study (CHARLS). Annual mean O3 concentrations assessed through machine learning-based spatiotemporal models were assigned to each participant at city level. Depression score was measured using the 10-item Center for Epidemiologic Studies Depression scale (CES-D-10), with scores above the cut-off point of ten defined as depressive symptom. Mixed-effects models were used to evaluate the impact of O3 on depression score and depressive symptom, and quantify the concentration-response (C-R) relationships. Subgroup analyses were performed to examine the potential effect modifications. RESULTS: A total of 19,582 participants with 60,125 visits were included in our analysis, with mean depression score of 8.1 (standard deviation: 6.3). Multivariable-adjusted mixed-effects model estimated a 6.34% (95% confidence interval [CI]: 3.34%, 9.43%) increase in depression score and an odds ratio (OR) of 1.29 (95% CI: 1.16, 1.45) for depressive symptom associated with per 10-µg/m3 rise in annual mean O3 exposure. Significantly elevated risks were identified only at high concentrations (approximately ≥90 µg/m3). Participants who suffered from chronic diseases had a significant increased risk of depression (% Change in depression score: 8.42% [95% CI: 4.79%, 12.17%], and OR: 1.42 [95% CI: 1.24, 1.62]), and an evident effect modification was identified for depressive symptom (P = 0.01). FINDINGS: Our study provided novel evidence that long-term O3 exposure could be a risk factor for depression among Chinese middle-aged and older adults. Our findings may have significant implications for formulating policies in reducing disease burden of depression by controlling air pollution.


Subject(s)
Air Pollutants , Ozone , Middle Aged , Humans , Aged , Air Pollutants/analysis , Longitudinal Studies , Depression/epidemiology , Environmental Exposure/analysis , Ozone/analysis , China/epidemiology
18.
Environ Sci Pollut Res Int ; 30(30): 74853-74861, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37209338

ABSTRACT

Most existing studies have investigated short-term associations between ozone exposure and acute disease events among children at a daily timescale, which might neglect risk effects happening within several hours after ozone exposure. In this research, we aimed to depict intraday associations between pediatric emergency department visits (PEDVs) and exposure to ozone in order to better detect ultra-short-term effects of ozone exposure on children. We obtained hourly data of all-cause PEDVs, air pollutants, and meteorological factors in Shenzhen and Guangzhou, China, 2015-2018. We applied time-stratified case-crossover design and conditional logistic regression models to estimate odds ratios per 10-µg/m3 rise of ozone concentrations at various exposure periods (e.g., 0-3, 4-6, 7-12, 13-24, 25-48, and 49-72 h) prior to PEDVs, controlling for hourly relative humidity and temperature. Subgroup analyses divided by gender, age, and season were undertaken to identify the potential susceptible population and period. A total of 358,285 cases of PEDVs were included in two cities, and hourly average concentration of ozone was 45.5 µg/m3 in Guangzhou and 58.9 µg/m3 in Shenzhen, respectively. Increased risks of PEDVs occurred within a few hours (0-3 h) after exposure to ozone and remained up to 48 h. Population risks for PEDVs increased by 0.8% (95% confidence interval, 0.6 to 1.0) in Shenzhen and 0.7% (0.5 to 0.9) in Guangzhou for a 10-µg/m3 increase in ozone concentrations at lag 4-6 h and lag 7-12 h, respectively. These findings were robust to co-exposure adjustments in our sensitivity analyses. Significantly greater ozone-associated risks were consistently observed during cold months (October to March of the following year) in both cities, while we did not identify evidence for effect modification of children's age and gender. This study provided novel evidence for increased risks of acute disease events among children within several hours after ozone exposure, highlighting the significant implications for policymakers to establish hourly air quality standards for better protecting children's health.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Child , Humans , Acute Disease , Air Pollutants/analysis , Air Pollution/analysis , China/epidemiology , Cross-Over Studies , Emergency Service, Hospital , Environmental Exposure/analysis , Ozone/analysis , Particulate Matter/analysis , Male , Female
19.
J Hazard Mater ; 454: 131539, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37149946

ABSTRACT

BACKGROUND: Cohort evidence linking long-term survival with exposure to multiple air pollutants (e.g., fine particulate matter [PM2.5] and ozone) was extensively sparse in low- and middle-income countries, especially among older adults. This study aimed to investigate potential associations of long-term exposures to PM2.5 and ozone with all-cause mortality in Chinese older adults. METHODS: A dynamic nationwide prospective cohort comprising 20,352 adults aged ≥65 years were enrolled from the Chinese Longitudinal Healthy Longevity Study and followed up through 2005-2018. Participants' annual exposures to warm-season ozone and year-round PM2.5 were assigned using satellite-derived spatiotemporal estimates. A directed acyclic graph (DAG) was developed to identify confounding variables. Associations of annual mean exposures to PM2.5 and ozone with mortality were evaluated using single- and two-pollutant Cox proportional hazards models, adjusting for time-dependent individual risk factors and ambient temperature. RESULTS: During 100 thousand person-years of follow-up (median: 3.6 years), a total of 14,313 death events occurred. The participants were averagely aged 87.1 years at baseline and exposed to a wide range of annual average concentrations of warm-season maximum 8-hour ozone (mean, 54.4 ppb; range, 23.3-81.6 ppb) and year-round PM2.5 (mean, 65.5 µg/m3; range, 10.1-162.9 µg/m3). Approximately linear concentration-response relationship was identified for ozone, whereas significant increases in PM2.5-associated mortality risks were observed only when concentrations were above 60 µg/m3. Rises of 10 ppb in ozone and 10 µg/m3 in PM2.5 above 60 µg/m3 were associated with increases in all-cause mortality of 13.2% (95% confidence interval [CI]: 10.2-16.2%) and 6.2% (95% CI: 4.6-7.7%) in DAG-based single-pollutant model, and of 9.7% (95% CI: 6.6-13.0%) and 5.3% (95% CI: 3.7-6.9%) in DAG-based two-pollutant model, respectively. We detected significant effect modification by temperature in associations of mortality with ozone (P <0.001 for interaction), suggesting greater ozone-related risks among participants in warmer locations. CONCLUSIONS: This study provided longitudinal evidence that long-term exposure to ambient PM2.5 and ozone significantly and independently contributed to elevated risks of all-cause mortality among older adults in China.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Humans , Aged , Ozone/toxicity , Ozone/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Prospective Studies , East Asian People , Environmental Exposure/analysis , Air Pollutants/analysis , Particulate Matter/analysis , Cohort Studies
20.
Sci Total Environ ; 886: 163988, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37150464

ABSTRACT

BACKGROUND: Short-term exposure to ambient PM2.5 and PM10 (particulate matter with aerodynamic diameters ≤2.5 µm and 10 µm, respectively) has been linked with hospitalization and mortality from stroke. However, the effect of PM1 (≤1 µm) exposure on the risk of hospitalization from stroke and its subtypes has rarely been investigated, in particular, on the basis of fine-scale exposure assessment at the individual level. METHODS: We collected data on hospital admissions due to stroke and its subtypes in Guangzhou, China from January 1, 2014 to December 31, 2018. Daily exposures to PM1, PM2.5, and PM10 were assessed from satellite-derived estimates at a 1-km2 spatial resolution based on residential addresses. A time-stratified case-crossover analysis combined with a conditional logistic regression model was performed to examine the associations of stroke hospitalization risks with short-term exposure to size-fractional particles. We conducted stratified analyses by sex, age, season, and ambient temperature. RESULTS: A total of 178,586 stroke hospitalizations were recorded during the study period, among which 141,709 cases were ischemic stroke and 25,255 cases were hemorrhagic stroke. The mean concentrations on the day of hospitalization were 20.0 µg/m3 (control days: 19.9 µg/m3) for PM1, 37.6 µg/m3 (37.4 µg/m3) for PM2.5, and 59.3 µg/m3 (59.0 µg/m3) for PM10. Short-term exposure to size-fractional particles was significantly associated with increased risks of hospital admission for overall stroke and ischemic stroke, whereas null or negative associations were observed for hemorrhagic stroke. Compared with PM2.5 and PM10, PM1 was associated with greater excess risks of stroke hospitalizations. For each 10-µg/m3 increase in PM1, PM2.5, and PM10 exposure at lag 03-day, the odds ratios were 1.016 (95% confidence interval: 1.008, 1.024), 1.007 (1.003, 1.011), and 1.007 (1.004, 1.010) for overall stroke hospitalization, and were 1.023 (1.014, 1.033), 1.010 (1.005, 1.014), and 1.009 (1.006, 1.013) for ischemic stroke, respectively. These associations were robust to co-pollutant adjustments and did not vary by sex and age, while significantly elevated risks were identified in cold months (October to March of the next year) and low-temperature days (<23.8 °C) only. CONCLUSIONS: Short-term exposure to particulate matter air pollution, particularly PM1, was associated with increased risks of hospitalization for overall stroke and ischemic stroke.


Subject(s)
Air Pollutants , Air Pollution , Hemorrhagic Stroke , Ischemic Stroke , Stroke , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Cross-Over Studies , Air Pollution/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Hospitalization , China/epidemiology , Stroke/epidemiology , Environmental Exposure/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...