Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(56): 118736-118753, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37917268

ABSTRACT

In this work, different iron-based cathode materials were prepared using two different approaches: a novel one-step approach, which involved the incorporation of iron oxide with Printex® L6 carbon/PTFE (PL6C/PTFE) on bare carbon felt (CF) and a two-step approach, where iron oxide is deposited onto CF previously modified with PL6C/PTFE. The results obtained from the physical characterization indicated that the presence of iron oxide homogeneously dispersed on the felt fibers with the CF 3-D network kept intact in the one-step approach; whereas the formation of iron oxide aggregates between the felt fibers for material obtained using the two-step approach. Among the iron oxide-based cathodes investigated, the iron-incorporated electrode exhibited the greatest efficiency in terms of the removal and mineralization of norfloxacin (NOR) under neutral pH (complete NOR removal in less than 30 min with around 50% mineralization after 90 min). The findings of this study show that the low cost and simple-to-prepare iron-modified carbon-based materials in HEF process led to the enhanced degradation of organic contaminants in aqueous solutions.


Subject(s)
Carbon , Water Pollutants, Chemical , Norfloxacin , Oxidation-Reduction , Water Pollutants, Chemical/analysis , Hydrogen Peroxide/chemistry , Iron/chemistry , Electrodes , Polytetrafluoroethylene/chemistry
2.
Environ Sci Pollut Res Int ; 30(55): 117871-117880, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37875760

ABSTRACT

In this work, a new coating of boron-doped diamond ultra-nanocrystalline (U-NBDD), tailored to prevent massive formation of perchlorates during disinfection, is evaluated as electrode for the reclaiming of treated secondary wastewater by the electrochemically assisted disinfection process. Results obtained are compared to those obtained by using a standard electrode (STD) that was evaluated as a standard in previous research showing outstanding performance for this application. First tests were carried out to evaluate the chlorine speciation obtained after the electrolysis of synthetic chloride solutions at two different ranges of current densities. Concentrations of hypochlorite obtained using the U-NBDD anode at 25 mA cm-2 were 1.5-fold higher, outperforming STD anode; however, at 300 mA cm-2, an overturn on the behavior of anodes occurs where the amount of hypochlorite produced on STD anode was 1.5-fold higher. Importantly, at low current density the formation of chlorates and perchlorates is null using U-NBDD. Then, the disinfection of the real effluent of the secondary clarifier of a municipal wastewater treatment facility is assessed, where inactivation of Escherichia coli is achieved at low charge applied per volume electrolyzed (0.08 A h L-1) at 25 mA cm-2 using the U-NBDD. These findings demonstrate the appropriateness of the strategy followed in this work to obtain safer electro-disinfection technologies for the reclaiming of treated wastewater.


Subject(s)
Wastewater , Water Pollutants, Chemical , Diamond/chemistry , Disinfection/methods , Hypochlorous Acid , Perchlorates , Electrolysis/methods , Electrodes , Oxidation-Reduction , Water Pollutants, Chemical/chemistry
3.
Chemosphere ; 342: 140171, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37714487

ABSTRACT

This study upgrades the sustainability of environmental electrochemical technologies with a novel approach consisting of the in-situ cogeneration and use of two important oxidants, hydrogen peroxide (H2O2) and Caro's acid (H2SO5), manufactured with the same innovative cell. This reactor was equipped with a gas diffusion electrode (GDE) to generate cathodically H2O2, from oxygen reduction reaction, a boron doped diamond (BDD) electrode to obtain H2SO5, via anodic oxidation of dilute sulfuric acid, and a proton exchange membrane to separate the anodic and the cathodic compartment, preventing the scavenging effect of the interaction of oxidants. A special design of the inlet helps this cell to reach simultaneous efficiencies as high as 99% for H2O2 formation and 19.7% for Caro's acid formation, which means that the cogeneration reaches efficiencies over 100% in the uses of electric current to produce oxidants. The two oxidants' streams produced were used with different configurations for the degradation of three volatile organic compounds (benzene, toluene, and xylene) in a batch reactor equipped with a UVC-lamp. Among different alternatives studied, the combination H2SO5/H2O2 under UVC irradiation showed the best results in terms of degradation efficiency, demonstrating important synergisms as compared to the bare technologies.


Subject(s)
Oxidants , Water Pollutants, Chemical , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Electrodes , Boron/chemistry , Diamond/chemistry , Water Pollutants, Chemical/chemistry
4.
Chemosphere ; 279: 130875, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34134435

ABSTRACT

The environmental persistence of hexachlorobenzene (HCB) is a challenge that promotes studies for efficient treatment alternatives to minimize its environmental impact. Here, we evaluated the HCB removal by electrochemical, biological, and combined approaches. The electrochemical treatment of 4 µM HCB solutions was performed using a synthesized Ti/RuO2-IrO2-TiO2 anode, while the biological treatment using mangrove-isolated bacteria was at 24, 48, and 72 h. The HCB degradability was assessed by analyzing chemical oxygen demand (COD), microbial growth capacity in media supplemented with HCB as the only carbon source, gas chromatography, and ecotoxicity assay after treatments. The synthesized anode showed a high voltammetric charge and catalytic activity, favoring the HCB biodegradability. All bacterial isolates exhibited the ability to metabolize HCB, especially Bacillus sp. and Micrococcus luteus. The HCB degradation efficiency of the combined electrochemical-biological treatment was evidenced by a high COD removal percentage, the non-HCB detection by gas chromatography, and a decrease in ecotoxicity tested with lettuce seeds. The combination of electrochemical pretreatment with microorganism degradation was efficient to remove HCB, thereby opening up prospects for in situ studies of areas contaminated by this recalcitrant compound.


Subject(s)
Titanium , Water Pollutants, Chemical , Bacteria , Electrodes , Hexachlorobenzene , Lasers , Oxidation-Reduction , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...