Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
Pharmaceutics ; 16(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38931869

ABSTRACT

Citrulline (C6H13N3O3) is an amino acid found in the body as a zwitterion. This means its carboxylic and amine groups can act as Lewis donors to chelate metal cations. In addition, citrulline possesses a terminal ureido group on its aliphatic chain, which also appears to coordinate. Here, two new mixed complexes of citrulline were made with 1,10-phenanthroline and 2,2'-bipyridine. These compounds, once dissolved in water, gave aquo-complexes that were subject to DFT studies and in vitro toxicity studies on cancer cell lines (HeLa, MDA-MB-231, HCT 15, and MCF7) showed promising results. Docking studies with DNA were also conducted, indicating potential anticancer properties.

2.
J Inorg Biochem ; 255: 112524, 2024 06.
Article in English | MEDLINE | ID: mdl-38507993

ABSTRACT

Copper can be opportunely complexed to modulate oncogenic pathways, being a promising strategy for cancer treatment. Herein, three new copper(II) complexes containing long-chain aliphatic hydrazides and 1,10-phenanthroline (1,10-phen), namely, [Cu(octh)(1,10-phen)(H2O)](NO3)21, [Cu(dech)(1,10-phen)(H2O)](NO3)22 and [Cu(dodh)(1,10-phen)(H2O)](NO3)2.H2O 3 (where octh = octanoic hydrazide, dech = decanoic hydrazide, dodh = dodecanoic hydrazide) were successfully prepared and characterized by several physical-chemical methods. Furthermore, X-ray structural analysis of complex 2 indicated that the geometry around the copper(II) ion is distorted square-pyramidal, in which hydrazide and 1,10-phenanthroline act as bidentate ligands. A water molecule in the apical position completes the coordination sphere of the metal ion. All new copper(II) complexes were cytotoxic to breast cancer cell lines (MCF7, MDA-MB-453, MDA-MB-231, and MDA-MB-157) and selective when compared to the non tumor lineage MCF-10A. In particular, complex 2 showed half-maximal inhibitory concentration (IC50) values ranging between 2.7 and 13.4 µM in MDA-MB231 cells after 24 and 48 h of treatment, respectively. Furthermore, this complex proved to be more selective for tumor cell lines when compared to doxorubicin and docetaxel. Complex 2 inhibited the clonogenicity of MDA-MB231 cells, increasing adenosine diphosphate (ADP) hydrolysis and upregulating ecto-nucleoside triphosphate diphosphohydrolase 1 (ENTPD1) transcriptional levels. In this sense, we suggest that the inhibitory effect on cell proliferation may be related to the modulation of adenosine monophosphate (AMP) levels. Thus, a novel copper(II) complex with increased cytotoxic effects and selectivity against breast cancer cells was obtained, contributing to medicinal chemistry efforts toward the development of new chemotherapeutic agents.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Triple Negative Breast Neoplasms , Humans , Copper/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Hydrazines , Hydrolysis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Phenanthrolines/pharmacology , Phenanthrolines/chemistry , Adenosine Diphosphate , Crystallography, X-Ray
3.
Future Microbiol ; 19: 385-395, 2024 03.
Article in English | MEDLINE | ID: mdl-38381028

ABSTRACT

Background: New chemotherapeutics are urgently required to treat Candida infections caused by drug-resistant strains. Methods: The effects of 16 1,10-phenanthroline (phen)/1,10-phenanthroline-5,6-dione/dicarboxylate complexed with Mn(II), Cu(II) and Ag(I) were evaluated against ten different Candida species. Results: Proliferation of Candida albicans, Candida dubliniensis, Candida famata, Candida glabrata, Candida guilliermondii, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis and Candida tropicalis was inhibited by three of six Cu(II) (MICs 1.52-21.55 µM), three of three Ag(I) (MICs 0.11-12.74 µM) and seven of seven Mn(II) (MICs 0.40-38.06 µM) complexes. Among these [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2].4H2O, where oda = octanedioic acid, exhibited effective growth inhibition (MICs 0.4-3.25 µM), favorable activity indexes, low toxicity against Vero cells and good/excellent selectivity indexes (46.88-375). Conclusion: [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2].4H2O represents a promising chemotherapeutic option for emerging, medically relevant and drug-resistant Candida species.


Candida species are widespread fungi that can cause a variety of infections in humans, and some of them exhibit resistance profile to existing antifungal drugs. Consequently, it is imperative to discover novel treatments for these clinically relevant human infections. Complexes are chemical compounds containing metal ion components that are well-known for their antimicrobial properties, including antifungal activity. In the present study, we investigated the effects of 16 novel complexes against ten medically relevant Candida species, including some strains resistant to commonly used clinical antifungals. Our findings revealed that all complexes containing manganese and silver metals effectively inhibited the growth of all Candida species tested, albeit to varying extents. Some of these complexes exhibited superior antifungal activity and lower toxicity to mammalian cells compared to traditional antifungals, such as fluconazole. In conclusion, these new complexes hold promise as a potential novel approach for treating fungal infections, especially those caused by drug-resistant Candida strains.


Subject(s)
Antifungal Agents , Copper , Phenanthrolines , Animals , Chlorocebus aethiops , Copper/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Silver/pharmacology , Manganese/pharmacology , Vero Cells , Candida , Candida albicans , Microbial Sensitivity Tests , Drug Resistance, Fungal
4.
Future Microbiol ; 18: 1049-1059, 2023 11.
Article in English | MEDLINE | ID: mdl-37284767

ABSTRACT

Background: Scedosporium/Lomentospora species are human pathogens that are resistant to almost all antifungals currently available in clinical practice. Methods: The effects of 16 1,10-phenanthroline (phen)/1,10-phenanthroline-5,6-dione/dicarboxylate chelates containing Cu(II), Mn(II) and Ag(I) against Scedosporium apiospermum, Scedosporium minutisporum, Scedosporium aurantiacum and Lomentospora prolificans were evaluated. Results: To different degrees, all of the test chelates inhibited the viability of planktonic conidial cells, displaying MICs ranging from 0.029 to 72.08 µM. Generally, Mn(II)-containing chelates were the least toxic to lung epithelial cells, particularly [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2].4H2O (MICs: 1.62-3.25 µM: selectivity indexes >64). Moreover, this manganese-based chelate reduced the biofilm biomass formation and diminished the mature biofilm viability. Conclusion: [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2].4H2O opens a new chemotherapeutic avenue for the deactivation of these emergent, multidrug-resistant filamentous fungi.


Metals have been used to treat microbial infections for centuries. In this context, the effects of 16 metal-based compounds against the human pathogens Scedosporium apiospermum, Scedosporium minutisporum, Scedosporium aurantiacum and Lomentospora prolificans were tested. All the 16 metal-based compounds were able to interfere with the viability of these fungal pathogens to different degrees. Among the 16 compounds, a manganese-containing compound presented the best activity against the fungal species and it presented the least toxicity to a human lung cell line. In addition, this manganese-containing compound reduced the ability of fungal cells to come together and form a type of community called biofilm. In conclusion, the manganese-containing compound presents a promising option against the multidrug-resistant filamentous fungi species belonging to the Scedosporium/Lomentospora genera.


Subject(s)
Ascomycota , Scedosporium , Humans , Scedosporium/physiology , Phenanthrolines/pharmacology , Antifungal Agents/pharmacology
5.
Pharmaceutics ; 15(5)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37242587

ABSTRACT

Coordination complexes may act as anticancer agents. Among others, the formation of the complex may facilitate the ligand uptake by the cell. Searching for new copper compounds with cytotoxic activity, the complex Cu-dipicolinate was studied as a neutral scaffold to form ternary complexes with diimines. A series of [Cu(dipicolinate)(diimine)] complexes (where diimine: Phenanthroline, phen, 5-NO2-phenanthroline, 4-methyl-phenanthroline, neocuproine, 3,4,7,8-tetramethyl-phenanthroline, tmp, bathophenanthroline, bipyridine, dimethyl-bipyridine, as well as the ligand 2,2-dipyridil-amine, bam) were synthesized and characterized both in the solid state, including a new crystal structure of [Cu2(dipicolinate)2(tmp)2]·7H2O. Their chemistry in aqueous solution was explored by UV/vis spectroscopy, conductivity, cyclic voltammetry, and electron paramagnetic resonance studies. Their DNA binding was analyzed by electronic spectroscopy (determining Kb values), circular dichroism, and viscosity methods. The cytotoxicity of the complexes was assessed on human cancer cell lines MDA-MB-231, MCF-7 (breast, the first triple negative), A549 (lung epithelial) and A2780cis (ovarian, Cisplatin-resistant), and non-tumor cell lines MRC-5 (lung) and MCF-10A (breast). The major species are ternary, in solution and solid state. Complexes are highly cytotoxic as compared to Cisplatin. Complexes containing bam and phen are interesting candidates to study their in vivo activity in triple-negative breast cancer treatment.

6.
Molecules ; 28(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36677957

ABSTRACT

Searching for new copper compounds which may be useful as antitumor drugs, a series of new [Cu(L-dipeptide)(batho)] (batho:4,7-diphenyl-1,10-phenanthroline, L-dipeptide: Gly-Val, Gly-Phe, Ala-Gly, Ala-Ala, Ala-Phe, Phe-Ala, Phe-Val and Phe-Phe) complexes were synthesized and characterized. To interpret the experimental IR spectra, [Cu(ala-gly)(batho)] was modelled in the gas phase using DFT at the B3LYP/LANL2DZ level of theory and the calculated vibrational frequencies were analyzed. Solid-state characterization is in agreement with pentacoordinate complexes of the general formula [Cu(L-dipeptide)(batho)]·x solvent, similar to other [Cu(L-dipeptide)(diimine)] complexes. In solution, the major species are heteroleptic, as in the solid state. The mode of binding to the DNA was evaluated by different techniques, to understand the role of the diimine and the dipeptide. To this end, studies were also performed with complexes [CuCl2(diimine)], [Cu(L-dipeptide)(diimine)] and free diimines, with phenanthroline, neocuproine and 3,4,7,8-tetramethyl-phenanthroline. The cytotoxicity of the complexes was determined on human cancer cell lines MDA-MB-231, MCF-7 (breast, the first triple negative), and A549 (lung epithelial) and non-tumor cell lines MRC-5 (lung) and MCF-10A (breast). [Cu(L-dipeptide)(batho)] complexes are highly cytotoxic as compared to cisplatin and [Cu(L-dipeptide)(phenanthroline)] complexes, being potential candidates to study their in vivo activity in the treatments of aggressive tumors for which there is no curative pharmacological treatment.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Humans , Copper/chemistry , Phenanthrolines/pharmacology , Phenanthrolines/chemistry , Coordination Complexes/chemistry , Antineoplastic Agents/chemistry , DNA/chemistry , Dipeptides/pharmacology , Dipeptides/chemistry
7.
Pathogens ; 12(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36678418

ABSTRACT

Leishmaniasis is a neglected disease caused by protozoa belonging to the Leishmania genus. Notably, the search for new, promising and potent anti-Leishmania compounds remains a major goal due to the inefficacy of the available drugs used nowadays. In the present work, we evaluated the effects of 1,10-phenanthroline-5,6-dione (phendione) coordinated to silver(I), [Ag(phendione)2]ClO4 (Ag-phendione), and copper(II), [Cu(phendione)3](ClO4)2·4H2O (Cu-phendione), as potential drugs to be used in the chemotherapy against Leishmania amazonensis and Leishmania chagasi. The results showed that promastigotes treated with Ag-phendione and Cu-phendione presented a significant reduction in the proliferation rate. The IC50 values calculated to Ag-phendione and Cu-phendione, respectively, were 7.8 nM and 7.5 nM for L. amazonensis and 24.5 nM and 20.0 nM for L. chagasi. Microscopical analyses revealed several relevant morphological changes in promastigotes, such as a rounding of the cell body and a shortening/loss of the single flagellum. Moreover, the treatment promoted alterations in the unique mitochondrion of these parasites, inducing significant reductions on both metabolic activity and membrane potential parameters. All these cellular perturbations induced the triggering of apoptosis-like death in these parasites, as judged by the (i) increased percentage of annexin-positive/propidium iodide negative cells, (ii) augmentation in the proportion of parasites in the sub-G0/G1 phase and (iii) DNA fragmentation. Finally, the test compounds showed potent effects against intracellular amastigotes; contrarily, these molecules were well tolerated by THP-1 macrophages, which resulted in excellent selective index values. Overall, the results highlight new selective and effective drugs against Leishmania species, which are important etiological agents of both cutaneous (L. amazonensis) and visceral (L. chagasi) leishmaniasis in a global perspective.

8.
Res Microbiol ; 174(4): 104015, 2023 May.
Article in English | MEDLINE | ID: mdl-36566772

ABSTRACT

Trichomoniasis is a neglected, parasitic, sexually transmitted infection. Resistance to the only approved drugs is increasing worldwide, leaving millions of people without alternative medications. Thus, the search for new therapeutic options against this infection is necessary. Previously, our group reported that 1,10-phenanthroline-5,6-dione (phendione) and its silver(I) and copper (II) complexes (abbreviated as Ag-phendione and Cu-phendione, respectively) presented activity against the amitochondriate parasite T. vaginalis, with Cu-phendione being the most effective (IC50 = 0.84 µM). Methods: qRT-PCR, SEM, flow cytometry. The current study on the effects of Cu-phendione on the antioxidant metabolism of T. vaginalis by qRT-PCR revealed that the complex causes a decrease in the relative expression of mRNA of NADH oxidase, flavin reductase, superoxide dismutase, peroxiredoxin, iron-sulfur flavoprotein, rubrerythrin and osmotically inducible proteins. In contrast, the mRNA expression of flavodiiron protein was increased. Detoxification-related enzymes were downregulated, impairing oxygen metabolism in trophozoites and triggering a subsequent accumulation of the superoxide anion. Although no DNA fragmentation was observed, the treatment of parasites with Cu-phendione led to a significant reduction in cell size and a concomitant increase in granularity. The complex promoted phosphatidylserine exposure at the plasma membrane (as judged by Annexin V binding) and propidium iodide was unable to passively permeate the parasites. All of these outcomes are classical hallmarks of cell death by apoptosis. In essence, the trichomonacidal effect of Cu-phendione operates through redox homeostasis imbalance, which is a mode of action that is quite distinct from that caused by metronidazole.


Subject(s)
Trichomonas vaginalis , Humans , Trichomonas vaginalis/genetics , Copper/pharmacology , Silver/pharmacology , Oxidative Stress
9.
Molecules ; 29(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38202636

ABSTRACT

In this work, we report on the synthesis and characterization of six new iridium(III) complexes of the type [Ir(C^N)2(N^N)]+ using 2-phenylpyridine (C1-3) and its fluorinated derivative (C4-6) as cyclometalating ligands (C^N) and R-phenylimidazo(4,5-f)1,10-phenanthroline (R = H, CH3, F) as the ancillary ligand (N^N). These luminescent complexes have been fully characterized through optical and electrochemical studies. In solution, the C4-6 series exhibits quantum yields (Ф) twice as high as the C1-3 series, exceeding 60% in dichloromethane and where 3MLCT/3LLCT and 3LC emissions participate in the phenomenon. These complexes were employed in the active layer of light-emitting electrochemical cells (LECs). Device performance of maximum luminance values of up to 21.7 Lx at 14.7 V were observed for the C2 complex and long lifetimes for the C1-3 series. These values are counterintuitive to the quantum yields observed in solution. Thus, we established that the rigidity of the system and the structure of the solid matrix dramatically affect the electronic properties of the complex. This research contributes to understanding the effects of the modifications in the ancillary and cyclometalating ligands, the photophysics of the complexes, and their performance in LEC devices.

10.
J Biol Inorg Chem ; 27(4-5): 431-441, 2022 08.
Article in English | MEDLINE | ID: mdl-35524804

ABSTRACT

New compounds to fight cancer are needed due to cancer high incidence and lack of curative treatments for several classes of this disease. Metal-based coordination compounds offer a variety of molecules that can turn into drugs. Among them, coordination copper complexes are emerging as an attractive class of compounds for cancer treatment. A series of [Cu(L-dipeptide)(tmp)] (tmp = 3,4,7,8-tetramethyl-1,10-phenanthroline) complexes were synthesized and characterized in the solid state, including the determination of the crystalline structure of [Cu(Gly-Gly)(tmp)]·3.5 H2O and [Cu2Cl4(tmp)2]. The complexes were studied in solution, where the major species are also ternary ones. The lipophilicity of the complexes was determined and the binding to the DNA was evaluated, suggesting that it occurs in the DNA's major groove. The cytotoxicity of the complexes was evaluated on different cancer cell lines: human metastatic breast adenocarcinoma MDA-MB-231 (triple negative, ATCC: HTB-26), MCF-7 (ATCC: HTB-22), SK-BR-3 (ATCC: HTB-30), human lung epithelial carcinoma A549 (ATCC: CCL-185), cisplatin resistant-human ovarian carcinoma A2780cis (SIGMA) and nontumoral cell lines: MRC-5 (lung; ATCC: CCL-171) and MCF-10A (breast, ATCC: CRL-10317). [Cu(L-dipeptide)(tmp)] complexes are highly cytotoxic as compared to [Cu(L-dipeptide)(phenanthroline)] and cisplatin. Therefore, [Cu(L-dipeptide)(tmp)] complexes are promising candidates to have their in vivo activity further studied toward new treatments for triple negative breast cancer and other aggressive tumors for which there is no curative pharmacological treatment to the date.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Triple Negative Breast Neoplasms , Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Coordination Complexes/chemistry , Copper/chemistry , Copper/pharmacology , DNA/chemistry , Dipeptides/chemistry , Humans , MCF-7 Cells , Phenanthrolines/chemistry
11.
J Photochem Photobiol B ; 229: 112414, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35276578

ABSTRACT

BACKGROUND: Photodynamic therapy (PDT) activates a photosensitizer by visible light to generate cytotoxic oxygen species that lead to cell death. With proper illumination, PDT is often used in applications on superficial and sub-surface lesions. Sporotrichosis infection occurs by Sporothrix fungi which causes a skin wound, worsened by Candida albicans infections. This study investigated the photosensitizing efficiency of the Ru(phen)2(pPDIp)(PF6)2 complex, RupPDIp, against S. brasiliensis and C. albicans. MATERIAL AND METHODS: RupPDIp efficiency against these fungi was tested using 450 nm (blue light and 36 J/cm2) and 525 nm (green light, 25.2 J/cm2) at 0.05-20 µM concentrations. To ensure PDT effectiveness, control groups were tested in the absence and in the presence of RupPDIp under light irradiation and in the dark. RESULTS: RupPDIp eliminated both fungi at ≤5.0 µM. Green light showed the best results, eliminating S. brasiliensis and C. albicans colonies at RupPDIp 0.5 µM and 0.05 µM, respectively. CONCLUSION: RupPDIp is a promising photosensitizer in aPDT, eliminating 106 CFU/mL of both fungi at 450 nm and 525 nm, with lower light doses and concentrations when treated with the green light compared to the blue light.


Subject(s)
Anti-Infective Agents , Photochemotherapy , Sporothrix , Anti-Infective Agents/therapeutic use , Candida albicans/radiation effects , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use
12.
J Inorg Biochem ; 226: 111658, 2022 01.
Article in English | MEDLINE | ID: mdl-34781206

ABSTRACT

Chloro(glycinato-N,O)(1,10-phenanthroline-N,N')­copper(II) trihydrate complex was synthesized through the slow evaporation method. The crystal's structural, thermal, magnetic, and vibrational properties were obtained by X-ray powder diffraction (XRPD), thermal analyses, magnetization, Raman, and Fourier-transform infrared (FT-IR) spectroscopy. XRPD results showed that the crystalline complex belongs to a monoclinic system (P21/n). Thermal analyses revealed that around 333 K, the material undergoes a thermodynamically irreversible process. Magnetic data showed a paramagnetic behavior with weak ferromagnetic interactions. Moreover, all the Raman- and infrared-active bands were assigned from computational calculations based on the density functional theory (DFT) to analyze intra-molecular vibrational modes. In addition, the cytotoxic assay on colorectal cancer cells was performed to evaluate the antitumor activity of this ternary compound. Therefore, the antineoplastic activity of [Cu(1,10-phenanthroline)(glycine)Cl]•3H2O complex in HCT-116 cells was confirmed, showing a potent cytotoxic effect.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Coordination Complexes , Copper , Cytotoxins , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Copper/pharmacology , Cytotoxins/chemistry , Cytotoxins/pharmacology , HCT116 Cells , Humans , Mice , RAW 264.7 Cells
13.
Parasitol Res ; 120(9): 3273-3285, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34363115

ABSTRACT

Leishmaniasis, included in the priority list of the WHO, remains as a neglected disease caused by parasites of the Leishmania genus. There is no vaccine available for human leishmaniasis, and the current treatment is based on old drugs that cause serious side effects. Herein, we initially studied the cellular distribution of the virulence factor gp63, the major metallopeptidase, in a virulent strain of Leishmania braziliensis, and then we measured the inhibitory effects of 1,10-phenanthroline-5,6-dione (phendione), and its metal complexes, [Cu(phendione)3](ClO4)2.4H2O and [Ag(phendione)2]ClO4, on both cellular and extracellular metallopeptidases produced by promastigotes. The action of the three compounds on parasite viability and on parasite-macrophage interaction was also determined. Gp63 molecules were detected in several parasite compartments, including the cytoplasm, the membrane lining the cell body and flagellum, and in the flagellar pocket, which explains the presence of gp63 in the culture medium. The test compounds inhibited parasite metallopeptidases in a typical dose-dependent manner, and they also caused a significant and irreversible inhibition of parasite motility. Moreover, the pre-treatment of promastigotes with the test compounds induced a decrease in the association index with macrophages. Collectively, phendione and its Cu(II) and Ag(I) complexes are excellent prototypes for the development of new anti-L. braziliensis drugs.


Subject(s)
Leishmania braziliensis , Macrophages/parasitology , Phenanthrolines , Copper , Humans , Leishmania braziliensis/drug effects , Phenanthrolines/pharmacology , Silver
14.
Tuberculosis (Edinb) ; 128: 102087, 2021 05.
Article in English | MEDLINE | ID: mdl-34022507

ABSTRACT

Mycobacterium tuberculosis is the major etiological agent for tuberculosis (TB), which is the leading cause of single pathogen infection-related deaths worldwide. The End TB Strategy of the World Health Organization aimed to decrease the incidence of TB by 20% between 2015 and 2020, which was not achieved. Here, the growth-inhibitory effects of tris-(1,10-phenanthroline) iron (II) complex ([Fe(phen)3]2+), a known commercially available cheap chemical substance, were examined. The best in vitro results showed great activity with MIC ranging from 0.77 to 3.06 µM against clinical strains and at low pH (mimicking the granuloma) with MIC of 0.21 µM. Preliminary safety analysis revealed that the complex did not exhibit cytotoxic activity against different cell lines or mutagenic activity in vitro. The complex was orally bioavailable after 2 h of administration in vivo. Additionally, the results of the acute toxicity test revealed that the complex did not exert toxic effects in female BALB/c mice. The mechanism of action was performed using D29 mycobacteriophages where the treatment with different concentrations of the complex inhibited viral protein synthesis, which indicated that the anti-TB mechanisms of the complex involve protein synthesis inhibition. These findings suggested that [Fe(phen)3]2+ is a potential novel therapeutic for TB.


Subject(s)
Ferric Compounds , Mycobacterium tuberculosis , Phenanthrolines , Animals , Female , Humans , Cell Line , Ferric Compounds/pharmacology , Hep G2 Cells , Mice, Inbred BALB C , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Phenanthrolines/pharmacology , Toxicity Tests, Acute , Tuberculosis
15.
Front Microbiol ; 12: 641258, 2021.
Article in English | MEDLINE | ID: mdl-34025603

ABSTRACT

Phialophora verrucosa is a dematiaceous fungus that causes mainly chromoblastomycosis, but also disseminated infections such as phaeohyphomycosis and mycetoma. These diseases are extremely hard to treat and often refractory to current antifungal therapies. In this work, we have evaluated the effect of 1,10-phenanthroline-5,6-dione (phendione) and its metal-based complexes, [Ag (phendione)2]ClO4 and [Cu(phendione)3](ClO4)2.4H2O, against P. verrucosa, focusing on (i) conidial viability when combined with amphotericin B (AmB); (ii) biofilm formation and disarticulation events; (iii) in vitro interaction with human macrophages; and (iv) in vivo infection of Galleria mellonella larvae. The combination of AmB with each of the test compounds promoted the additive inhibition of P. verrucosa growth, as judged by the checkerboard assay. During the biofilm formation process over polystyrene surface, sub-minimum inhibitory concentrations (MIC) of phendione and its silver(I) and copper(II) complexes were able to reduce biomass and extracellular matrix production. Moreover, a mature biofilm treated with high concentrations of the test compounds diminished biofilm viability in a concentration-dependent manner. Pre-treatment of conidial cells with the test compounds did not alter the percentage of infected THP-1 macrophages; however, [Ag(phendione)2]ClO4 caused a significant reduction in the number of intracellular fungal cells compared to the untreated system. In addition, the killing process was significantly enhanced by post-treatment of infected macrophages with the test compounds. P. verrucosa induced a typically cell density-dependent effect on G. mellonella larvae death after 7 days of infection. Interestingly, exposure to the silver(I) complex protected the larvae from P. verrucosa infection. Collectively, the results corroborate the promising therapeutic potential of phendione-based drugs against fungal infections, including those caused by P. verrucosa.

16.
Lett Appl Microbiol ; 73(2): 139-148, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33843058

ABSTRACT

Infections caused by KPC-producing Klebsiella pneumoniae (Kp-KPC) are associated with high mortality rates due to the increased number of resistant isolates and the scarcity of therapeutic options. This scenario reinforces the urgent need for new chemotherapeutics. Herein, we investigated the effects of 1,10-phenanthroline-5,6-dione (phendione) and its metal-based complexes, [Cu(phendione)3 ](ClO4 )2 .4H2 O (Cu-phendione) and [Ag(phendione)2 ]ClO4 (Ag-phendione), both alone and also combined with carbapenems (meropenem (MEM), and imipenem), against 46 clonally distinct clinical strains of Kp-KPC. All isolates were found to be multidrug resistant in accordance with their susceptibility patterns by disk diffusion method. Compounds geometric mean (GM)-MIC and GM-MBC values (µmol l-1 ), respectively, were: phendione, 42·06 and 71·27; Cu-phendione, 9·88 and 13·75; and Ag-phendione, 10·10 and 13·06. Higher synergism rates of MEM-containing combinations were observed by the checkerboard assay, particularly with the two metal complexes. Moreover, drug combinations were able to re-sensitize 87% of the phenotypically non-susceptible strains. Time-kill studies, with MEM plus Cu-phendione or Ag-phendione, indicated that combinations with 0·5× MIC of each agent produce synergistic effects after 9-12 h. The MEM plus Ag-phendione eradicated about 106  CFU per ml of bacteria. These findings support the effectiveness of the re-sensitizing combinatorial approach and provide evidence that phendione-based compounds offer real promise in the fight against Kp-KPC infections.


Subject(s)
Carbapenems/pharmacology , Coordination Complexes/pharmacology , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Phenanthrolines/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/pharmacology , Drug Resistance, Multiple, Bacterial , Drug Synergism , Humans , Imipenem/pharmacology , Meropenem/pharmacology , Microbial Sensitivity Tests , beta-Lactamases/genetics , beta-Lactamases/metabolism , beta-Lactamases/pharmacology
17.
Environ Monit Assess ; 193(2): 63, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33447916

ABSTRACT

Iron is an essential mineral and one of the most abundant in soils, presenting itself in the environment as ferrous and ferric ions. As each oxidation state of iron has a different role in the environment, its speciation in environmental studies is important. The determination of ferrous iron received great attention from soil chemists because of its important role in agriculture, in redox processes, and as an electron acceptor in the catalysis of organic matter. Methodologies with the use of colorimetric reagents to determine ferrous iron are divergent and not very clear. In this study, we compared two colorimetric reagents (1,10-phenanthroline and ferrozine) to determine the total concentration of iron, ferrous and ferric ions in soil, using simple and low-cost methodologies. The determination of ferrous and total iron with 1,10-phenanthroline colorimetric reagent, following published instructions, did not correlate with ferrozine method, presenting an erroneous quantification. After neutralizing the extract of 1,10-phenanthroline with NaOH, both colorimetric methods allowed to quantify with precision and high yield the amount of ferrous and total iron extracted from the soil. The oxidation states of iron have a different contribution and importance to the environment. In this sense, the improvement of a widely used methodology is crucial for the better study of iron speciation in soil.


Subject(s)
Iron , Soil , Environmental Monitoring , Ferric Compounds , Ferrous Compounds , Iron/analysis , Minerals , Oxidation-Reduction
18.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 2): 166-176, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32831220

ABSTRACT

Dinuclear CuII complexes with 3,5-dinitrobenzoates and 2,2'-bipyridine (2) or 1,10-phenanthroline (3) were synthesized and characterized. A complete energy framework analysis using the HF/3-21G energy model was performed which found that dispersion forces and C-H...O interactions are responsible for the crystal structure features. The magnetic properties of the complexes show a weak magnetic exchange between spins, resulting in low exchange constants of -2.72 (1) cm-1 and -1.10 (1) cm-1 for complexes (2) and (3), respectively. This results from the low overlap between magnetic orbitals induced by 3,5-dinitrobenzoate bridges and the arrangement of the magnetic orbitals. Consequently, the dinuclear complexes (2) and (3) behave as spin-isolated multinuclear CuII species in contrast to the trinuclear complex with similar ligands.

19.
Braz J Microbiol ; 51(4): 1703-1710, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32737867

ABSTRACT

Therapeutic options are limited for patients infected with Acinetobacter baumannii due to its multidrug-resistance profile. So, the search for new antimicrobials against this gram-negative bacterial pathogen has become a worldwide priority. The present study aimed to evaluate the effects of 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione (phendione), [Ag(phendione)2]ClO4 (Ag-phendione) and [Cu(phendione)3](ClO4)2·4H2O (Cu-phendione) on 26 carbapenemase-producing A. baumannii strains. The susceptibility to carbapenems was performed by detecting the metallo-beta-lactamase (MBL) genes by PCR and by determining the MIC. Also, disk diffusion method was applied to evaluate the susceptibility to other antimicrobial classes. The test compounds were evaluated on both planktonic- and biofilm-growing bacterial cells. The results revealed that all A. baumannii strains had the intrinsic blaoxa-51 gene, and at least one of the blaoxa-23 or blaoxa-24 genes. The geometric mean MIC and minimum bactericidal concentration (MBC) values, respectively, were as follows: Cu-phendione (1.56 and 2.30 µM), Ag-phendione (2.48 and 3.63 µM), phendione (9.44 and 9.70 µM), and phen (70.46 and 184.28 µM). The test compounds (at 0.5 × MIC) affected the biofilm formation and disrupted the mature biofilm, in a typically dose-dependent manner, reducing biomass and viability parameters. Collectively, silver and copper-phendione derivatives presented potent antimicrobial action against planktonic- and biofilm-forming cells of carbapenemase-producing A. baumannii.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Biofilms/drug effects , Phenanthrolines/pharmacology , beta-Lactamases/metabolism , Acinetobacter Infections/microbiology , Acinetobacter baumannii/growth & development , Acinetobacter baumannii/isolation & purification , Acinetobacter baumannii/metabolism , Anti-Bacterial Agents/chemistry , Biofilms/growth & development , Carbapenems/pharmacology , Copper/chemistry , Copper/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Humans , Microbial Sensitivity Tests , Phenanthrolines/chemistry , Silver/chemistry , Silver/pharmacology
20.
Front Microbiol ; 10: 1701, 2019.
Article in English | MEDLINE | ID: mdl-31428062

ABSTRACT

Elastase B (lasB) is a multifunctional metalloenzyme secreted by the gram-negative pathogen Pseudomonas aeruginosa, and this enzyme orchestrates several physiopathological events during bacteria-host interplays. LasB is considered to be a potential target for the development of an innovative chemotherapeutic approach, especially against multidrug-resistant strains. Recently, our group showed that 1,10-phenanthroline-5,6-dione (phendione), [Ag(phendione)2]ClO4 (Ag-phendione) and [Cu(phendione)3](ClO4)2.4H2O (Cu-phendione) had anti-P. aeruginosa action against both planktonic- and biofilm-growing cells. In the present work, we have evaluated the effects of these compounds on the (i) interaction with the lasB active site using in silico approaches, (ii) lasB proteolytic activity by using a specific fluorogenic peptide substrate, (iii) lasB gene expression by real time-polymerase chain reaction, (iv) lasB protein secretion by immunoblotting, (v) ability to block the damages induced by lasB on a monolayer of lung epithelial cells, and (vi) survivability of Galleria mellonella larvae after being challenged with purified lasB and lasB-rich bacterial secretions. Molecular docking analyses revealed that phendione and its Ag+ and Cu2+ complexes were able to interact with the amino acids forming the active site of lasB, particularly Cu-phendione which exhibited the most favorable interaction energy parameters. Additionally, the test compounds were effective inhibitors of lasB activity, blocking the in vitro cleavage of the peptide substrate, aminobenzyl-Ala-Gly-Leu-Ala-p-nitrobenzylamide, with Cu-phendione having the best inhibitory action (K i = 90 nM). Treating living bacteria with a sub-inhibitory concentration (½ × MIC value) of the test compounds caused a significant reduction in the expression of the lasB gene as well as its mature protein production/secretion. Further, Ag-phendione and Cu-phendione offered protective action for lung epithelial cells, reducing the A549 monolayer damage by approximately 32 and 42%, respectively. Interestingly, Cu-phendione mitigated the toxic effect of both purified lasB molecules and lasB-containing bacterial secretions in the in vivo model, increasing the survival time of G. mellonella larvae. Collectively, these data reinforce the concept of lasB being a veritable therapeutic target and phendione-based compounds (mainly Cu-phendione) being prospective anti-virulence drugs against P. aeruginosa.

SELECTION OF CITATIONS
SEARCH DETAIL